簡易檢索 / 詳目顯示

研究生: 詹詩蘭
Shih-Lan Chan
論文名稱: 二維胺官能化六方氮化硼疊層複合薄膜應用於 奈米過濾之研究
Improving Nanofiltration Performance of Laminar Composite Membranes by Amino Functionalized Two-dimensional Hexagonal Boron Nitride
指導教授: 賴君義
Juin-Yih Lai
胡蒨傑
Chien-Chieh Hu
口試委員: 李魁然
Kueir-Rarn Lee
洪維松
Wei-Song Hung
王志逢
Chih-Feng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 107
中文關鍵詞: 六方氮化硼疊層複合薄膜氧化石墨烯氧化石墨烯量子點奈米過濾
外文關鍵詞: Hexagonal Boron Nitride nanosheets, Lamina composite membrane, Graphene oxide, Graphene oxide quantum dots, Nanofiltration
相關次數: 點閱:333下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣每年工廠排放大量染料廢水,這些廢水若直接排放將嚴重威脅台灣的生態環境,開發高通量、高選擇性之染料廢液處理薄膜,則可以同時解決工廠排放染料廢水汙染環境及染料回收再利用的問題,本研究將以開發處理染料廢液的高效能奈濾薄膜為主要目標。
    本研究利用球磨結合脲素改質六方氮化硼(h-BN)合成胺化六方氮化硼奈米片(h-BN(-NH2)) ,並以真空輔助法製備疊層複合薄膜,奈米片沉積形成薄膜時,片與片之間常出現無選擇性的空隙(shortcuts),或是片材本身在球磨時產生缺陷而導致低染料阻擋率,因此本實驗添加不同尺寸碳奈米片(氧化石墨烯(GO)及GO量子點)來修補缺陷並調控薄膜的微結構,將較大尺寸的GO奈米片與h-BN(-NH2)混和形成1wt% GO/h-BN(-NH2)薄膜;或是以小尺寸的GO量子點(GQD)作為摻混物製作1wt% GQD/h-BN(-NH2)薄膜。探討添加不同尺寸的碳奈米片對h-BN(-NH2)疊層複合薄膜微結構及奈米過濾效能的影響。
    FTIR、XRD被用於確認胺基成功接枝在六方氮化硼邊緣並剝離成奈米片。 DLS、TEM結果可確認h-BN(-NH2)、GO及GQD之尺寸大小。Zeta potential、AFM、WCA用於鑑定薄膜表面之電性、粗糙度和親水性。DBES用於分析薄膜內部之微結構,確認GQD或GO的摻合可成功填補薄膜片層間的缺陷。
    在奈濾分離測試中,h-BN(-NH2)薄膜之純水通量達到295.3 LMH bar-1,對於methyl green染料阻擋率僅72.9%;1wt% GQD/h-BN(-NH2)薄膜可增加methyl green的阻擋率至90.6% 並維持283.4 LMH bar-1的高純水通量;而1wt% GO/h-BN(-NH2)薄膜對於methyl green達到> 97.5%阻擋率、純水通量為170.8 LMH bar-1。
    長時間抗結垢操作結果,h-BN(-NH2)、1wt% GQD/h-BN(-NH2)及1wt% GO/h-BN(-NH2)三種薄膜的通量回復率(FRR)分別為86.8%、88.3%、88.3%,三種薄膜皆表現良好的海藻酸鈉(SA)抗污染性能。


    The factories in Taiwan discharge huge among of dye wastewater every year. It will seriously threaten Taiwan's ecological environment, if the dye wastewater was directly discharged. The development of high-flux and high-selectivity membranes for dye wastewater treatment can simultaneously solve the problem of dye wastewater discharge polluting the environment and dye recycling and reuse. The main goal of this research is to develop high-efficiency membranes for treating dye wastewater.
    In this work, urea was used to modify inorganic hexagonal boron nitride (h-BN) to form ammoniated hexagonal boron nitride nanosheets (h-BN(-NH2)), and the laminated composite membranes were prepared by vacuum-assisted method. Shortcuts appear when stacking with the sheets, or the sheets formed defects during ball milling which result in low dye selectivity. Therefore, in this research, the blending of carbon nanosheets of different sizes are used to repair the defects and adjust the microstructure of the membranes. 1wt% GO/h-BN(-NH2) membrane was prepared by mixing larger-area GO nanosheets with h-BN(-NH2). Small-sized GO quantum dots (GQDs) blend with h-BN(-NH2) forming 1wt% GQD/h-BN(-NH2) membrane. The effect of the size of the blended nanosheets on the microstructure and nanofiltration efficiency of h-BN(-NH2) lamina composite membranes was investigated.
    FTIR and XRD were used to confirm that amino groups were successfully grafted on the edge of hexagonal boron nitride and exfoliated into nanosheets. DLS and TEM results can confirm the size of h-BN(-NH2), GO and GQD. Zeta potential, AFM, WCA are used to identify the electrical properties, roughness and hydrophilicity of the membranes. DBES was used to analyze the microstructure of the membranes, confirming that the blending of GQD or GO can successfully fill the defects in the membranes.
    The pure water flux of h-BN(-NH2) membranes for nanofiltration reaches 295.3 LMH bar-1, but the rejection of methyl green is only 72.9%; The 1wt% GQD/h-BN(-NH2) membranes maintain 283.4 LMH bar-1 high pure water flux and the rejection of methyl green reaches 90.6%; The pure water flux of 1wt% GO/h-BN(-NH2) membrane is 170.8 LMH bar-1 and over 97.5% dye rejection for methyl green dyes.
    The results of anti-fouling test show that the three kinds of membranes have good anti-fouling performance. The Flux recovery ratio (FRR) for h-BN(-NH2), 1wt% GQD/h-BN(-NH2) and 1wt% GO/h-BN(-NH2) membranes are 86.8%, 88.3% and 88.3%, respectively.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 第一章 緒論 1 1.1前言 1 1.2薄膜分離技術 2 1.2.1薄膜分離概述 2 1.2.2薄膜材料 3 1.2.3 薄膜的結構 4 1.3奈米過濾 5 1.4研究動機與目的 8 1.5 實驗流程圖 9 第二章 文獻回顧 10 2.1 氧化石墨烯之特性及其在薄膜的應用 11 2.2 六方氮化硼之特性與改質及其在薄膜的應用 14 2.3 奈米二維片材薄膜之製備與奈米過濾之應用 19 2.3.1 有機/無機混合基質薄膜 19 2.3.2 無機奈米片材疊層複合薄膜 21 2.4零維石墨烯量子點特性及其在薄膜的應用 26 2.5 混成奈米片材薄膜奈米過濾之應用 29 2.6 膜汙染 32 第三章 實驗材料與方法 34 3.1實驗藥品 34 3.2實驗儀器 36 3.3實驗步驟 37 3.3.1胺化氮化硼奈米片分散液製備 37 3.3.2氧化石墨烯奈米片分散液製備 37 3.3.3氧化石墨烯量子點分散液製備 37 3.3.4薄膜製備 38 3.4材料鑑定與性質檢驗 40 3.5分離性能測量 42 3.6染料結構與性質 44 3.7薄膜抗結垢測量 45 3.8 薄膜循環利用測試 47 第四章 結果與討論 48 4.1六方氮化硼之剝離 48 4.2胺官能化六方氮化硼奈米片之鑑定與分析 49 4.2.1分散液巨觀分析及比較 49 4.2.2胺化六方氮化硼化學組成分析 50 4.2.3胺化改質對六方氮化硼層間距的影響 51 4.2.4 h-BN(-NH2)奈米片材尺寸分析 52 4.3氧化石墨烯奈米片及氧化石墨烯量子點之鑑定與分析 55 4.4 薄膜結構調控 57 4.5奈米複合薄膜之鑑定與分析 61 4.5.1薄膜的表面性質鑑定 61 4.5.2薄膜表面及截面型態 64 4.5.3薄膜內部微結構之鑑定 66 4.6薄膜之奈米過濾分離效能 68 4.6.1最適化薄膜厚度之選擇 68 4.6.2 薄膜之奈濾效能 69 4.7薄膜抗結垢特性 75 4.8奈米過濾之文獻比較 79 第五章 結論 80 參考文獻 81

    [1] Katheresan, V.; Kansedo, J.; Lau, S. Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A review, Journal of Environmental Chemical Engineering, 2018, 6 (4), 4676-4697.
    [2] 賴君義 et al., 薄膜科技概論 Introduction to Membrane Science and Technology, 五南圖書出版有限公司, 2019.
    [3] Gebreyohannes, A. Y.; Mazzei R.; Curcio, E.; Poerio, T.; Drioli, E.; Giorno, L. Study on the in Situ Enzymatic Self-Cleansing of Microfiltration Membrane for Valorization of Olive Mill Wastewater, Industrial and Engineering Chemistry Research, 2013, 52 (31), 10396–10405.
    [4] Xu, T.; Zhang, J. M.; Guo, H. S.; Zhao, W. Q.; Li, Q. S.; Zhu, Y. N.; Yang, J.; Bai, J.; Zhang, L. Antifouling Fibrous Membrane Enables High Efficiency and High-Flux Microfiltration for Water Treatment, Applied Materials and Interfaces, 2021, 13 (41), 49254–49265.
    [5] Lin, C. W.; Xue, S. M.; Ji, C, H.; Huang, S. C.; Tung, V.; Kaner, R.B. Conducting Polyaniline for Antifouling Ultrafiltration Membranes: Solutions and Challenges, Nano Letters, 2021, 21 (9), 3699–3707.
    [6] Gethard, K.; Sae-Khow, O.; Mitra, S. Water Desalination Using Carbon-Nanotube-Enhanced Membrane Distillation, Applied Materials and Interfaces, 2011, 3 (2), 110–114.
    [7] Chen, I. Y.; Lin, X. H.; Gai, J. G. Polyethylenimine Linked Glycidol Surface Antifouling Reverse Osmosis Membrane, Industrial & Engineering Chemistry Research, 2018, 57 (6), 2322–2328.
    [8] Jiang, D.; Cooper, V. R.; Dai, S. Porous Graphene as the Ultimate Membrane for Gas Separation, Nano Letters, 2009, 9 (12), 4019–4024.
    [9] Zhang, B. W.; Wu, Q.; Yu, H. T.; Bulin, C.; Sun, H.; Li, R. H.; Ge, X.; Xing, R. G. High-Efficient Liquid Exfoliation of Boron Nitride Nanosheets Using Aqueous Solution of Alkanolamine, Nanoscale Research Letters, 2017, 12, 596.
    [10] Ihsanullah I.; Bilal, M. Potential of MXene-based Membranes in Water Treatment and Desalination: A Critical Review, Chemosphere, 2022, 303 (3), 135234.
    [11] Su, Y.; Liu, D.; Yang, G. L.; Han, Q.; Qian, Y. J.; Liu, Y. C.; Wang, L. F.; Razal, J. M.; Lei, W. W. Transition Metal Dichalcogenide (TMD) Membranes with Ultrasmall Nanosheets for Ultrafast Molecule Separation, Applied Materials and Interfaces, 2020, 12 (40), 45453–45459.
    [12] Achari, A.; Sahana S.; Eswaramoorthy, M. High Performance MoS2 Membranes: Effects of Thermally Driven Phase Transition on CO2 Separation Efficiency, Energy and Environmental Science, 2016, 9, 1224-1228.
    [13] Zhua H. J.; Liu, D. X. The Synthetic Strategies of Metal–organic Framework Membranes, Films and 2D MOFs and Their Applications in Devices, Journal of Materials Chemistry A, 2019, 37 (7), 21004–21035.
    [14] Liu, G. P.; Jin, W. Q.; Xu, N. P. Two-Dimensional-Material Membranes: A New Family of High-Performance Separation Membranes, Angewandte Chemie International Edition, 2016, 55 (43), 13384-13397.
    [15] Kim, J. S.; Khoh, W. H.; Wee, B. H.; Hong, J.D. Fabrication of Flexible Reduced Graphene Oxide–TiO2 Freestanding Films for Supercapacitor Application, The Royal Society of Chemistry Advances, 2015, 5 (13), 9904–9911.
    [16] Xue, S. M.; Ji, C. H.; Kowal, M. D.; Molas, J. C.; Lin, C. W.; McVerry, B.T.; Turner, C. L.; Mak, W. H.; Anderson, M.; Muni, M.; Hoek, E. M. V.; Xu, Z. L.; Kaner, R. B. Nanostructured Graphene Oxide Composite Membranes with Ultrapermeability and Mechanical Robustness, Nano Letters, 2020, 20 (4), 2209-2218.
    [17] Ying, W.; Cai, J. S.; Zhou, K.; Chen, D.; Ying, Y. L.; Guo, Y.; Kong, X. Q.; Xu, Z. P.; Peng, X. S. Ionic Liquid Selectively Facilitates CO2 Transport through Graphene Oxide Membrane, American Chemical Society Nano, 2018, 12 (6), 5385–5393.
    [18] Wang, Z. H.; Yu, H. R.; Xia, J. F.; Zhang, F. F.; Li, F.; Xia, Y. Z.; Li Y. H. Novel GO-blended PVDF Ultrafiltration Membranes, Desalination, 2012, 299, 50-54.
    [19] You, Y.; Jin, X.H.; Wen, X.Y.; Sahajwalla, V.; Chen, V.; Bustamante, H.; Joshi, R.K. Application of Graphene Oxide Membranes for Removal of Natural Organic Matter from Water, Carbon, 2018, 129, 415-419.
    [20] Vatanpour, V.; Mehrabani, S. L. N.; Keskin, B.; Arabi, N.; Zeytuncu, B.; Koyuncu, I. A Comprehensive Review on the Applications of Boron Nitride Nanomaterials in Membrane Fabrication and Modification, Industrial and Engineering Chemistry Research, 2021, 60 (37), 13391–13424.
    [21] Fu L.; Wang, T.; Yu, J. H.; Dai W.; Sun, H. Y.; Liu, Z. D.; Sun, R.; Jiang, N.; Yu, A. M.; Lin C. T. An Ultrathin High-performance Heat Spreader Fabricated with Hydroxylated Boron Nitride Nanosheets, 2D Materials, 2017, 4 (2).
    [22] Weng, Q. H.; Wang, X. B.; Wang, X.; Bando, Y. S.; Golberg, D. Functionalized Hexagonal Boron Nitride Nanomaterials: Emerging Properties and Applications, Chemical Society Review, 2016, 60 (370), 13391–13424.
    [23] Das, R.; Fernández, P. S.; Breite, D.; Prager, A.; Lotnyk, A.; Schulze, A.; Ago, H. High Flux and Adsorption Based Non-functionalized Hexagonal Boron Nitride Lamellar Membrane for Ultrafast Water Purification, Chemical Engineering Journal, 2021, 420 (2), 127721.
    [24] Lei, W. W.; Mochalin, V. N.; Liu, D.; Qin, S.; Gogotsi, Y.; Chen, Y. Boron Nitride Colloidal Solutions, Ultralight Aerogels and Freestanding Membranes Through One-step Exfoliation and Functionalization, Nature Communications, 2015, 6, 8849.
    [25] Lee, D. J.; Lee, B.; Park, K. H.; Ryu, H. J.; Jeon, S. W.; Hong, S. H. Scalable Exfoliation Process for Highly Soluble Boron Nitride Nanoplatelets by Hydroxide-Assisted Ball Milling, Nano Letters, 2015, 15 (2), 1238–1244.
    [26] Bai, Y. Q.; Zhang, J.; Wang, Y. F.; Cao, Z. Y.; An, L. L.; Zhang, B.; Yu, Y. L.; Zhang, J. Y.; Wang, C. M. Ball Milling of Hexagonal Boron Nitride Microflakes in Ammonia Fluoride Solution Gives Fluorinated Nanosheets That Serve as Effective Water-Dispersible Lubricant Additives, Applied Nano Materials, 2019, 2 (5), 3187–3195.
    [27] Xiao, F.; Naficy, S.; Casillas, G.; Khan, M. H.; Katkus, T.; Jiang, L.; Liu, H.; Li, H.; Huang Z. Edge-Hydroxylated Boron Nitride Nanosheets as an Effective Additive to Improve the Thermal Response of Hydrogels, Advanced Materials, 2015, 27 (44), 7196-7203.
    [28] Keshebo, D. L.; Hu, C. C.; Hung, W. S.; Wang, C. F.; Tsai, H. C.; Lee, K. R.; Lai, J. Y. Simultaneous Exfoliation and Functionalization of Hexagonal Boron Nitride in the Aqueous Phase for the Synthesis of High-performance Wastewater Treatment Membrane, Journal of Cleaner Production, 2021, 314, 128083.
    [29] Wu, K.; Fang, J. C.; Ma, J. R.; Huang, R.; Chai, S. G.; Chen, F.; Fu, Q. Achieving a Collapsible, Strong, and Highly Thermally Conductive Film Based on Oriented Functionalized Boron Nitride Nanosheets and Cellulose Nanofiber, Applied Materials and Interfaces, 2017, 9 (35), 30035–30045.
    [30] Zhao, L. H.; Yan, L.; Wei, C. M.; Wang, Z.; Jia, L. C.; Ran, Q. C.; Huang, X. L.; Ren J. W. Aqueous-Phase Exfoliation and Functionalization of Boron Nitride Nanosheets Using Tannic Acid for Thermal Management Applications, Industrial and Engineering Chemistry Research, 2020, 59 (37), 16273–16282.
    [31] Low, Z. X.; Ji, J.; Blumenstock, D.; Chew, Y. M.; Wolverson, D.; Mattia, D. Fouling Resistant 2D Boron Nitride Nanosheet – PES Nanofiltration Membranes, Journal of Membrane Science, 2018, 563, 949-956.
    [32] Pandey, R. P.; Rasheed P. A.; Gomez, T.; Azam, R. S.; Mahmoud K.A. A Fouling-resistant Mixed-matrix Nanofiltration Membrane Based on Covalently Cross-linked Ti3C2TX (MXene)/Cellulose acetate, Journal of Membrane Science, 2020, 607, 118139.
    [33] Shu, L.; Xie, L. H.; Meng, Y.; Liu, T.; Zhao, C.; Li, J. R. A Thin and High Loading Two-dimensional MOF Nanosheet Based Mixed-matrix Membrane for High Permeance Nanofiltration, Journal of Membrane Science, 2020, 603, 118049.
    [34] Kang, Y.; Xia, Y.; Wang, H. T.; Zhang, X. W. 2D Laminar Membranes for Selective Water and Ion Transport, Advanced Functional Materials, 2019, 29, 1902014.
    [35] Chen, C.; Wang, J. M.; Liu, D.; Yang, C.; Liu, Y. C.; Ruoff R. S.; Lei, W. W. Functionalized Boron Nitride Membranes with Ultrafast Solvent Transport Performance for Molecular Separation, Nature Communications, 2018, 9, 1902.
    [36] Wang, J. Q.; Zhang, P.; Liang, B.; Liu, Y. X.; Xu, T.; Wang, L. F.; Cao, B.; Pan K. Graphene Oxide as an Effective Barrier on a Porous Nanofibrous Membrane for Water Treatment, Applied Materials and Interfaces, 2016, 8 (9), 6211–6218.
    [37] Xing, C.; Han, J.; Pei, X.; Zhang, Y. T.; He, J.; Huang, R.; Li, S. H.; Liu, C. Y.; Lai, C.; Shen, L. D.; Nanjundan, A. K.; Zhang S. Q. Tunable Graphene Oxide Nanofiltration Membrane for Effective Dye/Salt Separation and Desalination, Applied Materials and Interaction, 2021, 13 (46), 55339-55348.
    [38] Meng, N.; Zhao, W.; Shamsaei, E.; Wang, G.; Zeng, X. K.; Lin, X. C.; Xu, T. W.; Wang H. T.; Zhang X. W. A low-pressure GO Nanofiltration Membrane Crosslinked via Ethylenediamine, Journal of Membrane Science, 2018, 548, 363-371.
    [39] Liu, Y.; Zhang, F. R.; Zhu, W. X.; Su, D.; Sang, Z. Y.; Yan, X.; Li, S.; Liang, J.; Dou S. X. A Multifunctional Hierarchical Porous SiO2/GO Membrane for High Efficiency Oil/Water Separation and Dye Removal, Carbon, 2020, 160, 88-97.
    [40] Ghaffarkhah, A.; Hosseini, E.; Kamkar, M.; Sehat, A. A.; Dordanihaghighi, S.; Allahbakhsh, A.; Kuur, C.; Arjmand, Synthesis, M. Synthesis, Applications, and Prospects of Graphene Quantum Dots: A Comprehensive Review, Small, 2021, 18 (2), 2102683.
    [41] Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L. G.; Li, D.; Tan, H. Q.; Zhao, Z.; Xie Z. G.; Sun, Z. C. Highly Luminescent S, N Co-doped Graphene Quantum Dots with Broad Visible Absorption Bands for Visible Light Photocatalysts, Nanoscale, 2013, 5 (24), 12272–12277.
    [42] Tang, L. B.; Ji, R. B.; Cao, X. K.; Lin, J. Y.; Jiang, H. X.; Li , X. M.; Teng, K. S.; Luk, C. M.; Zeng, S. J.; Hao, J. H.; Lau, S. P. Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots, American Chemical Society Nano, 2012, 6, (6), 5102–5110.
    [43] Lecaros, R. L. G.; Chua, K. Y.; Tayo, L. L.; Hung W. S.; Hu, C. C.; An, Q. F.; Tsai, H. A.; Lee K. R.; Lai, J. Y. The Fine-structure Characteristics and Isopropanol/Water Dehydration Through Pervaporation Composite Membranes Improved with Graphene Quantum Dots, Separation and Purification Technology, 2020, 247 (15), 116956.
    [44] Lecaros, R. L. G.; Chua, K. Y.; Tayo, L. L.; Hung W. S.; Hu, C. C.; An, Q. F.; Tsai, H. A.; Lee K. R.; Lai, J. Y. Influence of Integrating Graphene Oxide Quantum Dots on the Fine Structure Characterization and Alcohol Dehydration Performance of Pervaporation Composite Membrane, Journal of Membrane Science, 2019, 576 (15), 36-47.
    [45] Zeng, Z. P.; Yu, D. S.; He, Z. M.; Liu, J.; Xiao, F. X.; Zhang, Y.; Wang, R.; Bhattacharyya, D.; Tan, T. T. Y. Graphene Oxide Quantum Dots Covalently Functionalized PVDF Membrane with Significantly-Enhanced Bactericidal and Antibiofouling Performances, Scientific Reports volume, 2016, 6, 20142.
    [46] Zhang, C. F.; Wei, K. F.; Zhang, W. H.; Bai, Y. X.; Sun, Y. P.; Gu, J. Graphene Oxide Quantum Dots Incorporated into a Thin Film Nanocomposite Membrane with High Flux and Antifouling Properties for Low-Pressure Nanofiltration, Applied Materials and interfaces, 2017, 9 (12), 11082-11094.
    [47] Lin, H.; Mehra, N.; Li, Y. F.; Zhu, J. H. Graphite Oxide/Boron Nitride Hybrid Membranes: The Role of Cross-plane Laminar Bonding for a Durable Membrane with Large Water Flux and High Rejection Rate, Journal of Membrane Science, 2019, 593, 117401.
    [48] Alemayehu, H. G.; Liu, C. J.; Hou, J. J.; Yang, J. L.; Fang, M. N.; Tang, Z. Y.; Li, L. S. Highly stable membrane comprising MOF nanosheets and graphene oxide for ultra-permeable nanofiltration, Journal of Membrane Science, 2022, 652, 120479.
    [49] Cheng, P.; Chen, Y.; Gu, Y. H.; Yan, X.; Lang W. Z. Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving, Journal of Membrane Science, 2019, 591, 117308.
    [50] Han, Y.; Jiang, Y. Q.; Gao C. High-Flux Graphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes, Applied Materials And Interfaces, 2015, 7 (15), 8147–8155.
    [51] Akhondi, E.; Wicaksana, F.; Fane, A. G. Evaluation of fouling deposition, fouling reversibility and energy consumption of submerged hollow fiber membrane systems with periodic backwash, Journal of Membrane Science, 2014, 452, 319-331.
    [52] Bano, S.; Mahmood, A.; Kim, S. J.; Lee, K. H. Graphene Oxide Modified Polyamide Nanofiltration Membrane with Improved Flux and Antifouling Properties, Journal of Materials Chemistry A, 2015, 3 (5), 2065-2071.
    [53] Dong, Y. Q.; Shao, J. W.; Chen, C. Q.; Li, H.; Wang, R. X.; Chi, Y. W.; Lin, X. M.; Chen, G. N. Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid, Carbon, 2012, 50 (12),4738-4743.
    [54] Nasir, S.; Hussein, M. Z.; Zainal, Z.; Yusof, N. A.; Mohd Zobir, S. A.; Alibe, I. M. Potential Valorization of By-product Materials From Oil Palm: A Review of Alternative and Sustainable Carbon Sources for Carbon-based Nanomaterials Synthesis, Bio Resources, 2019, 14 (1), 2352-2388.
    [55] Li,Y.; Bi, R.; Su, Y. L.; Li, Y. F.; Yang, C.; You, X. D.; Shen, J. L.; Yuan, J. Q.; Zhang, R. N.; Jiang, Z. Y. Tuning the Pore Size of Graphene Quantum Dots Composite Nanofiltration Membranes by P-aminobenzoic Acid for Enhanced Dye/Salt Separation, Separation and Purification Technology, 2021, 263, 118372.
    [56] Wang, Y.; Yang, G. P.; Zhang, P. F.; Ma, L. L.; Wang, J. M.; Li, P. G.; Wang, Y. Y. Microporous Cd (II) Metal–Organic Framework for CO2 Catalysis, Luminescent Sensing, and Absorption of Methyl Green, Crystal Growth Design, 2021, 21 (5), 2734–2743.
    [57] Fang, X. F.; Wei, S. H.; Liu, S.; Li, R.; Zhang, Z. Y.; Liu, Y. B.; Zhang, X. R.; Lou, M. M.; Chen, G.; Li, F.; Metal-Coordinated Nanofiltration Membranes Constructed on Metal Ions Blended Support toward Enhanced Dye/Salt Separation and Antifouling Performances, Membranes, 2022, 12 (3), 340.
    [58] Pendse, A.; Cetindag, S.; Lin, M. H.; Rackovic, A.; Debbarma, R.; Almassi, S.; Chaplin, B. P.; Berry, V.; Shan, J. W.; Kim, S. Charged Layered Boron Nitride-Nanoflake Membranes for Efficient Ion Separation and Water Purification, Small, 2019, 15 (49), 1904590.
    [59] Lin, H.; Dangwal, S.; Liu, R. C.; Kim, S. J.; Li, Y. F.; Zhu, J. H. Reduced Wrinkling in GO Membrane by Grafting Basal-plane Groups for Improved Gas and Liquid Separations, Journal of Membrane Science, 2018, 563, 336-344.
    [60] Chiao, Y. H.; Hung W. S. Separation performance of alcohol-induced silk fibroin membranes with homogeneous and heterogeneous microstructures, Separation and Purification Technology, 2022, 29, 121004.
    [61] Xing, C.; Han, J.; Pei, X.; Zhang, Y. T.; He, J.; Huang, R.; Li, S. H.; Liu, C. Y.; Lai, C.; Shen, L. D.; Nanjundan, A. K.; Zhang S. Q. Tunable Graphene Oxide Nanofiltration Membrane for Effective Dye/Salt Separation and Desalination, Applied Materials and Interfaces, 2021, 13 (46), 55339–55348.
    [62] Alemayehu, G. H.; Liu, C. J.; Hou J. J.; Yang, J. L.; Fang, M. N.; Tang, Z. Y.; Li, L. S. Highly Stable Membrane Comprising MOF Nanosheets and Graphene Oxide for Ultra-permeable Nanofiltration, Journal of Membrane Science, 2022, 652, 120479.
    [63] Lecaros, R. L. G.; Bismonte, M. E.; Doma Jr. B. T.; Hung, W. S.; Hu, C. C.; Tsai, H. A.; Huang, S. H.; Lee, K. R. Alcohol Dehydration Performance of Pervaporation Composite Membranes with Reduced Graphene Oxide and Graphene Quantum Dots Homostructured Filler, Carbon, 2020, 162, 317-327.
    [64] Alberghina, G.; Bianchini, R.; Fichera, M.; Fisichella, S.; Dimerization of Cibacron Blue F3GA and Other Dyes: Influence of Salts and Temperature, Dyes and Pigments, 2000, 46 (3), 129-137.
    [65] Zhang, J. L.; Yang, L. B.; Wang, Z.; Yang, S. G.; Li, P.; Song, P.; Ban, M. A highly Permeable Loose Nanofiltration Membrane Prepared via Layer Assembled in-situ Mineralization, Journal of Membrane Science, 2019, 587, 117159.
    [66] Meragawi, S. E.; Akbari, A.; Hernandez, S.; Tanksale, A.; Majumder M. Efficient Permeance Recovery of Organically Fouled Graphene Oxide Membranes, Applied Bio Materials, 2020, 3 (1), 584–592.
    [67] Zazouli, M.; Nasseri, S.; Ulbricht, M. Fouling Effects of Humic and Alginic Acids in Nanofiltration and Influence of Solution Composition, Desalination, 2010, 250 (2), 688-692.
    [68] Alnajjar, H.; Tabatabai, A.; Alpatova, A.; Leiknesa, T.; Ghaffour, N. Organic Fouling Control in Reverse Osmosis (RO) by Effective Membrane Cleaning Using Saturated CO2 Solution, Separation and Purification Technology, 2021, 264, 118410.
    [69] Contreras, A. E.; Steiner, Z.; Miao, J.; Kasher, R.; Li, Q. L. Studying the Role of Common Membrane Surface Functionalities on Adsorption and Cleaning of Organic Foulants Using QCM-D, Environmental Science and technology, 2011, 45 (12), 6309-6315.
    [70] Zhang, P.; Gong, J. L.; Zeng, G. M.; Song, B.; Cao, W. C.; Liu, H. Y.; Huan, S. Y.; Peng P. Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure, Journal of Membrane Science, 2019, 574, 112-123.

    無法下載圖示 全文公開日期 2024/08/29 (校內網路)
    全文公開日期 2024/08/29 (校外網路)
    全文公開日期 2024/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE