簡易檢索 / 詳目顯示

研究生: 李家豪
Jia-Hao Li
論文名稱: 不飽和夯實紅土之視凝聚力及小應變土壤模數之特性
Apparent Cohesion and Small-Strain Soil Modulus of Unsaturated Compacted Lateritic Soil
指導教授: 林宏達
Horn-Da Lin
口試委員: 王建智
JIAN-JHIH WANG,
拱祥生
SIANG-SHENG KUNG,
鄧福宸
FU-CHEN DENG
林宏達
HORN-Da Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 149
中文關鍵詞: 小應變土壤模數視凝聚力不飽和夯實紅土
外文關鍵詞: Small-Strain Soil Modulus, Apparent Cohesion, Unsaturated Compacted Lateritic Soil
相關次數: 點閱:203下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

不飽和夯實紅土經乾化或濕化,土體內之含水量及基質吸力皆會改變,外載重如靜載重、反覆加載作用所引致之土體應變也會影響土壤模數,此外,不同深度下的土壤會有不同的圍壓應力,因此,同時考慮基質吸力、應變及圍壓應力對土壤模數之影響應是一值得深入探討之課題。本研究亦針對基質吸力對不飽和夯實紅土之強度參數進行探討。本研究以靜壓夯實法製作三種不同初始含水量之試體分別為乾側、最佳含水量(OMC) 及濕側,並利用環境模擬設備進行乾濕化以改變是體內部之含水量。接著再進行一系列之室內試驗包括:壓力鍋試驗、無圍壓縮試驗、不飽和三軸試驗及彎曲元件(無圍壓狀態及有圍壓狀態)等試驗,分別量測基質吸力、土壤強度及土壤模數。並根據試驗結果探討土壤組構、基質吸力、視凝聚力及應變相依土壤模數之相互關係。本研究針對試驗需求研製了一組改良的不飽和三軸試驗系統,此系統可以同時進行不飽和三軸強度試驗及彎曲元件試驗。試驗結果顯示,乾側試體經濕化到飽和再乾化後其土壤模數大幅降低且乾化時土壤模數隨吸力提高其增加之趨勢也較緩慢。OMC與濕側試體兩者之吸力特性較相近,但因OMC試體飽和後其膨脹較大,組構弱化程度比濕側大,因此土壤模數隨基質吸力提高之趨勢較濕側遲緩。此外,試驗結果亦顯示出圍壓應力之大小對土壤模數有著顯著的影響。由不飽和三軸試驗之結果可觀察到基質吸力與視凝聚力和摩擦角 呈現一非線性關係,且會隨基質吸力增加其變化量會趨於平緩。


The water content and matric suction of the unsaturated compacted lateritic soils are affected by the wetting and drying process. The strain induced by the external loading may influence the soil modulus. In addition, the confining pressure effect on the soil modulus is also an important issue. Therefore, the soil modulus varying with the matric suction, strain and confining pressure is an interesting issue worthy of further study. In addtion, the matric suction effect on the unsaturated shear strength parameters of compacted unsaturated lateritic soil is also investigated in this study. Soil specimens were compacted at three different initial water contents including the dry side, OMC and the wet side. They are then subjected to designated drying and wetting paths using the environmental simulation apparatus. Subsequently, a series of laboratory tests were conducted including the pressure plate test, the unconfined compression test, the unsaturated triaxial test and the bender element test (confined and unconfined condition) to assess the relationship among soil structure, matric suction, apparent cohesion and strain-dependent soil modulus. Moreover, a new unsaturated triaxial testing system was developed in this study to satisfy the testing purpose. Test results demonstrated that the soil modulus of dry side decreased substantially after wetting and increased less significantly as suction increase upon drying. Matric suction characteristics of the wet side and the OMC are similar However, soil modulus of OMC increased less rapidly than wet side upon drying due to the weakening of fabric upon saturation. Moreover, the test results indicate that the soil modulus is significantly affected by increasing the confining pressure. The test results also exhibit that the apparent cohesion increase with matric suction with a nonlinear relationship. In addition, the apparent cohesion increase become milder when the soil suction reaches high matric suction.

ABSTRACT iv CONTENT v FIGURES xi TABLES xviii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Structure and Content 2 Chapter 2 Literature Review 5 2.1 Unsaturated Compacted Soil Properties 5 2.1.1 Engineering Properties of Compacted Soil 5 2.1.2 Matric Suction of Unsaturated Compacted Soil 10 2.1.3 Influence of Compaction on Soil Suction 13 2.2 Shear Strength of Unsaturated Soil 16 2.2.1 Extend Mohr-Coulomb Criterion 16 2.2.2 Unsaturated Shear Strength Parameter 18 2.2.3 Unsaturated shear strength for compacted lateritic soil 20 2.3 Characteristic of Small Strain Soil Modulus of Unsaturated Soil 24 2.3.1 Maximum Shear Modulus 25 2.3.2 Young’s Modulus 28 2.3.3 The effect of Compaction Condition and Matric Suction on Maximum Shear Modulus 31 2.4 Effect of Confining Pressure on Maximum Shear Modulus 33 Chapter 3 Experiment Methods and Equipment 35 3.1 Experiment Program 35 3.2 Location of Testing Soil and Preparation of Sample 37 3.2.1 Physical Property Test 37 3.2.2 Modified Proctor Test 38 3.2.3 Preparation of Soil Sample 39 3.3 Pressure Plate Test 41 3.4 Unsaturated Triaxial Test 46 3.4.1 Unsaturated Triaxial Equipment 46 3.4.2 Calibration 51 3.4.3 Unsaturated Triaxial Testing Method 54 3.5 Unsaturated Soil Modulus Test 59 3.5.1 Drying and Wetting Environment Simulation 59 3.5.2 Bender Element Test (Unconfined condition) 63 3.5.3 Unconfined Compression Test 67 3.6 Bender Element test (Unconfined Condition) 75 3.6.1 Modified Unsaturated Triaxial Test System with Bender element 75 3.6.2 Bender Element Test Method (Confined Condition) 79 Chapter 4 Experimental Results 81 4.1 Basic Soil Property 81 4.2 Matric Suction Characteristic of Compacted Unsaturated Lateritic Soil 85 4.3 Investigation of Strength Characteristic 90 4.3.1 Consolidation Undrained Test 90 4.3.2 Unsaturated Triaxial Test 91 4.3.3 Unconfined Compression Test 97 4.4 Investigation of Soil Modulus 102 4.4.1 Bender Element Test Result (Unconfined condition) 102 4.4.2 Strain-Dependent Young’s Modulus 106 4.5 Matric Suction Effect on Soil modulus 111 4.5.1 Transforming of Soil Modulus 111 4.5.2 Matric Suction Effect on Young’s Modulus 114 4.6 Confining Pressure Effect on Maximum Shear Modulus. 118 Chapter 5 Conclusion and Suggestion 120 5.1 Conclusions 120 5.2 Suggestions 123 REFERENCES 125

1. 王正君,「乾濕化路徑與夯實狀態對土壤基質吸力之影響」,碩士論文,國立台灣科技大學營建工程系,(2008)。
2. 王旭暉,「以基質吸力觀點探討不飽和夯實紅土無圍壓縮強度與視凝聚力關係」,碩士論文,國立台灣科技大學營建工程研究所,(2016)。
3. 江宇祥,「不飽和夯實紅土之視凝聚力與剪力強度特性」,碩士論文,國立台灣科技大學營建工程研究所,(2014)。
4. 李豪智,「乾濕化路徑下基質吸力對不飽和夯實紅土應變相依土壤模數之影響」碩士論文,國立台灣科技大學營建工程系,(2016)。
5. 林建良,「不飽和凝聚性路基土壤回彈模數之研究」,碩士論文,國立台灣科技大學營建工程系,(2005)。
6. 周勃翰,「不飽和夯實紅土視凝聚力與吸力特性之試驗探討」,碩士論文,國立台灣科技大學營建工程系,(2015)。
7. 拱祥生,「降雨對不飽和土壤邊坡穩定性之影響研究」,碩士論文,國立台灣科技大學營建工程系,(1999)。
8. 拱祥生,「不飽和紅土基質吸力行為及其在工程上之應用」,博士論文,國立台灣科技大學營建工程系,(2011)。
9. 張鎮麟,「不飽和淺層崩基土壤之基質吸力與剪力強度特性」,碩士論文,國立台灣科技大學營建工程系,(2012)。
10. 黃志忠,「未飽和紅土吸、脫附段抗剪強度行為之研究」,碩士論文,國立中興大學土木工程系,(2003)。
11. 廖志穎,「不飽和路基土壤濕化及剪力模數研究」,碩士論文,國立台灣科技大學營建工程系,(2007)。
12. 鄭誠泰,「土壤塑性對未飽和紅土吸、脫附段抗剪強度行為之研究」,碩士論文,國立中興大學土木工程系,(2004)。
13. Atkinson, J. H., Sallfors, G., “Experimental Determination of Soil Properties”, Proceedings of the 10th ECSMFE, vol. 3, Florence, pp. 915–956, (1991).
14. Dang, H. P., Study of Tree-dimensional Excavation Behavior and Adjacent Structure Response Using Advanced Soil Model and Inverse Analysis Technique, Ph. D. dissertation, National Taiwan University of Science and Technology, (2014).
15. Fredlund, D. G., “Volume Change Behavior of Unsaturated Soils.” Ph.D. dissertation, Univ. of Alberta, Edmonton, Alta., Canada, 490 pp.., (1973).
16. Fredlund, D. G., and Morgenstern, N. R., “Stress State Variables for Unsaturated Soil.” Journal of Geotechnical Engineering, ASCE, GT5, Vol. 103, pp. 447-466, (1977).
17. Fredlund, D.G., Morgenstern, N.R., and Widger, R.A., “The Shear Strength of Unsaturated Soils. ” Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321, (1978).
18. Fredlund, D. G. and Rahardjo, H., Soil Mechanics for Unsaturated Soils., John Wiley, New York, (1993).
19. Fredlund, D. G. and Xing, A., “Equation for the Soil-Water Characteristic Curve.” Canadian Geotechnical Journal, Vol. 31, pp. 521-532, (1994).
20. Gan, J. K.-M., “Direct Shear Strength Testing of Unsaturated Soils.” M.Sc. thesis, University of Saskatchewan, Saskatoon, SK, (1986).
21. Hardin, B. O. and Drnevich, V. P., “Shear Modulus and Damping in Soils:Measurement and Parameter effects”, Proc. ASCE:Journal of the Soil Mechanics and Foundation Division, 98(SM6), pp.603-624, (1972).
22. Ho, D. Y. F. and Fredlund, D. G., “A Multistage Triaxial Test for Unsaturated Soils”, Geotechnical Testing Journal, Vol. 5, No. 1, pp. 18-28, (1982).
23. Holtz, R. D., Kovacs W. D., and Sheahan, T. C., An Introduction to Geotechnical Engineering., Pearson, London, (2011).
24. Krahn, J. and Fredlund, D. G., “On Total, Matric and Osmotic Suction”, Soil Science, Vol. 114, No. 5, pp. 339-348, (1972).
25. Lambe, T. W. and Whitman, R. V., Soil Mechanics., John Wiley, New York, (1969).
26. Lin, H. D., Kung, J. H. S., and Wang, C. C., “Matric Suction and Shear Modulus of Unsaturated Compacted Lateritic Soil Subjected to Drying and Werting”, Abstracts of The Sixth Japan-Taiwan Joint Workshop on Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, pp.139-140, July 12–15, 2014, Kitakyushu, Japan, (2014).
27. Lin, H. D., Wang, C. C., and Kung, J. H. S., “Wetting and Drying on Matric Suction of Compacted Cohesive Soil”, Proceedings, ISOPE-2015, the 25th International Ocean and Polar Engineering Conference (with CD-ROM), Vol.2, pp.1069-1075, Kona, Big Island, Hawaii, USA, (2015).
28. Miller, C. J., Yesiller, N., Yaldo, K., and Merayyan, S., “Impact of Soil Type and Compaction Conditions on Soil Water Characteristic”, Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.9, pp. 733-742, (2002).
29. Santagata, M., Germaine, J. T., and Ladd, C. C., “Factors Affecting the Initial Stiffness of Cohesive Soils”, Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.4, pp.430–441, (2005).
30. Nyunt, T. T., Leong, E. C., and Rahardjo, H., “Stress-Strain Behavior and Shear Strength of Unsaturated Residual Soil from Triaxial Tests”, Conference on Unsaturated Soils: Theory and Practice, pp. 221-226, (2011).
31. Oh, W. T. and Vanapalli, S. K., “Relationship between Poisson's Ratio and Soil Suction for Unsaturated Soils”, Proc., 5th Asia-Pacific. Conf. on Unsaturated Soils, pp. 239-245, (2011).
32. Rao, S. M., and Revanasiddappa, K., “Role of Soil Structure and Matric Suction on Collapse of Compacted Soils”, Geotechnical Testing Journal, Vol.26, pp. 102-110, (2003).
33. Seed, H. B. and Idriss, I. M. “Soil Moduli and Damping Factors for Dynamic Response Analysis”, EERC, Berkeley, CA, Report pp. 70-10, (1970).
34. Stokoe, K. H., Darendeli, R. b., Gilbertl, F.-Y. and Choi, W. K., “Development of a New Family of Normalized Modulus Reduction and Material Damping Curve”, In International Workshop on Uncertainties in Nonlinear Soil Properties and their Impact on Modeling Dynamic Soil Response, UC Berkeley, CA, (2004).
35. Sawangsuriya, A., Bosscher, P. J., and Edil, T. B., “Alternative Testing Techniques for Modulus of Pavement Bases and Subgrades”, Proceedings of the 13th Annual Great Lakes Geotechnical and Geoenvironmental Engineering Conference, ASCE, Geotechnical Practice Publication, No.3, Milwaukee, WI, 108-121, (2005).
36. Sawangsuriya, A., “Wave Propagation Method for Determining Stiffness of Geomaterials”, Professor Pasquale Giovine, pp.157-200, (2012).
37. Vucetic, M. and Dobry, R., “Effect of Soil Plasticity on Cyclic Response”, Journal of Geotechnical Engineering, ASCE, 117(1), pp.89-107, (1991).
38. Vanapalli, S.K., Fredlund, D.G., Pufahl, D.E., and Clifton, A.W., “Model for The Prediction of Shear Strength with Respect to Soil Suction”, Canadian Geotechnical Journal, Vol.33, No.3, pp.379-392, (1996).
39. William, P. J., The Surface of The Earth, An Introduction to Geotechnical Science., Longman Inc., New York, (1982).
40. Wang, C. C., Kung, J. H. S., Liao, C. Y. and Lin, H. D., “Experimental Study on Matric Suction of Unsaturated Subgrade Soil upon Drying and Wetting”, Proceedings, 3rd International Conference on Problematic Soils, CD-ROM, pp.345-352, Adelaide, Australia, (2010).
41. Yang, S. R., Lin, H. D. Kung, J. H. S. and Liao, J. Y., “Shear Wave Velocity and Suction of Unsaturated Soil Using Bender Element and Filter Paper Method”, Journal of GeoEngineering, Vol. 3, No. 2, pp. 67-74, (2008).
42. Yang, S. R. and Lin, H. D., “Influence of Soil Suction on Small-Strain Stiffness of Compacted Residual Subgrade Soil”, In Transportation Research Record Annual 11 Meeting 2009 Paper #09-0520, TRB, National Research Council, Washington, D. C., (2009).

QR CODE