簡易檢索 / 詳目顯示

研究生: 盧景星
Ching-Hsing Lu
論文名稱: 適用於微波雷達模組之壓控振盪器、除頻器及功率放大器研製
Development of Voltage Control Oscillators, Frequency Dividers and Power Amplifier for Microwave Radar System Application
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 瞿大雄
Tah-Hsiung Chu
馬自莊
Tzyh-Ghuang Ma
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 60
中文關鍵詞: 微波雷達系統壓控振盪器除頻器功率放大器
外文關鍵詞: Microwave Radar System, Voltage Control Oscillator, Frequency Divider, Power Amplifier
相關次數: 點閱:302下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要係研製微波雷達系統中所需之關鍵零組件。本論文利用傳輸線共振器結構於CMOS, GaAs及GIPD製程中設計多款24 GHz壓控振盪器及24 GHz注入鎖定除三除頻器,另外本論文亦使用源/負載阻抗牽引設計方法,且搭配簡易之輸出、入匹配網路研製一款2.4 GHz高效率F類功率放大器。
本論文研製之壓控振盪器主要係採用駐波振盪器電路架構,並實現於GaAs製程中,且利用T型結構取代傳統均勻傳輸線共振器,以達到微小化且可調之功能。另外,本論文亦使用雙共振腔及分佈式電壓技術研製一型24 GHz CMOS低相位雜訊壓控振盪器,其1 MHz之量測相位雜訊可達-103.27 dBc/Hz。注入鎖定除頻器主要係著重於使用CMOS及GIPD整合製程,並基於駐波壓控振盪器電路架構設計注入鎖定除頻器,其鎖頻相對頻寬可達5 %。功率放大器之研製,則使用諧波源/負載阻抗牽引的方式掃描最佳源/負載阻抗,以設計傳輸線輸出、入匹配網路。本論文所研製之F類功率放大器可獲致76.9 %之效率及39 dBm之輸出功率。


The aim of this thesis is to develop the essential components for microwave radar system applications. For the monolithic microwave integrated circuit (MMIC) design, the transmission line resonators are used to realize several types of 24 GHz voltage control oscillators (VCOs) and divided-by-3 injection locked oscillators (ILFDs) using the CMOS, GaAs and glass integrated passive device (GIPD) processes. Moreover, the high efficiency class-F power amplifier (PA) are also developed in this thesis with the harmonic input and output matching networks, which are designed by source/load pull techniques.
The VCOs are developed based on the architecture of the standing wave oscillator (SWO). The conventional transmission line resonator is replaced by the equivalent T-type structure to miniaturize the circuit size and provide the frequency tuning function. In addition, the dual-tank and distributed voltage techniques are also applied to realize a 24 GHz low phase-noise CMOS VCO with a phase-noise of -103.27 dBc/Hz at 1 MHz offset frequency. Based on the circuit configuration of the SWO structure , the ILFDs are designed using combined CMOS and GIPD process. The relative bandwidth of the simulated locking range is about 5 %. The harmonic source/load-pull technique is utilized to design input and output matching networks of the high efficiency class-F PA with a 76.9 % power added efficiency(PAE) and 39 dBm output power.

摘要 i Abstract ii 目錄 iii 第一章 緒論 1 1-1 微波都普勒雷達簡介 1 1-2 壓控振盪器 2 1-3 注入鎖定除頻器 4 1-4 功率放大器 5 1-5 章節說明 6 第二章 使用砷化鎵及CMOS積體電路製程研製壓控振盪器 7 2-1壓控振盪器簡介 7 2-2以等效T型共振器研製壓控振盪器 9 2-3以雙共振腔架構研製壓控振盪器 22 第三章 使用砷化鎵及CMOS積體電路製程研製注入鎖定除頻器 28 3-1除頻器簡介 28 3-2注入鎖定除三除頻器研製 32 3-3使用駐波振盪器設計之注入鎖定除三除頻器 36 第四章 使用氮化鎵電晶體研製高效率F類功率放大器 45 4-1高效率F類功率放大器設計 45 4-2高效率F類功率放大器量測結果 51 第五章 結論 56 參考文獻 57

[1] W. Andress and D. Ham, “Standing wave oscillators utilizing wave-adaptive tapered transmission lines,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 638–651, Mar. 2005.
[2] T.-H. Huang, and P.-L. You, “27-GHz low phase-noise CMOS standing-wave oscillator for millimeter wave applications,” IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, 2008, pp. 367-370.
[3] A. A. Tanany, A. Sayed, and G. Boeck, “Divide-by-three injection-locked frequency dividers over 200 GHz in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 405–416, Feb. 2013.
[4] R. A. Beltran, “UHF class-E power amplifier based upon multi-harmonic approximation,” IEEE MTT-S Int. Microwave Symp. Dig., Seattle, WA, 2013, pp. 1-4.
[5] Y. Leng, Y. Zeng, L. Zhang, G. Zhang, Y. Peng, J. Guan, and Y. Yan, “An extended topology of parallel-circuit class-E power amplifier using transmission-line compensation,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 4, pp. 1628-1638, Apr. 2013.
[6] H.-C. Chiu, C.-C. Wei, C.-S. Cheng, and Y.-F. Wu, “Phase-noise improvement of GaAs pHEMT K-Band voltage-controlled oscillator using tunable field-plate voltage technology,” IEEE Electron Device Lett., vol. 29, no. 5, pp. 426-429, May 2008.
[7] B. Piernas, K. Nishikawa, T. Nakagawa, and K. Araki, “A compact and low-phase-noise Ka–band pHEMT-based VCO,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 778-783, Mar. 2003.
[8] H. Shin, and J. Kim, “A 17-GHz push–push VCO based on output extraction from a capacitive common node in GaInP/GaAs HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 11, pp. 3857-3863, Mar. 2006.
[9] C.-L. Chang and C.-H. Tseng, “Design of microwave oscillator and voltage-controlled oscillator with second and third harmonic suppressions,” in Proc. 23rd Asia-Pacific Microwave Conf., Melbourne, VIC, Dec.2011, pp.876-879.
[10] H.-C. Chiu, C.-C. Wei, C.-S. Cheng, and Y.-F. Wu, “Phase-noise improvement of GaAs pHEMT K-Band voltage-controlled oscillator using tunable field-plate voltage technology,” IEEE Electron Device Lett., vol. 29, no. 5, pp. 426-429, May 2008.
[11] B. Piernas, K. Nishikawa, T. Nakagawa, and K. Araki, “A compact and low-phase-noise Ka-band pHEMT-based VCO,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, 2003, pp. 778-783.
[12] 陳瑋強(2009)。《Ku/K 頻段壓控振盪器及注入鎖定除頻器暨毫米波 fT -倍頻電路壓控振盪器與寬頻混頻器之研製》。中央大學研究所論文,桃園縣。
[13] C.-H. Chiu, K.-H. Liang, H.-Y. Chang et al., “A low phase noise 26-GHz push-push VCO with A wide tuning range in 0.18 μm CMOS technology,”Asia-Pacific Microwave Conf., pp. 1131-1134, Dec. 2006.
[14] S. Ko, J.-G. Kim, T. Song, E. Yoom, and S. Hong, “20 GHz integrated CMOS frequency sources with a quadrature VCO using transformers,” in IEEE RF IC Symp. Dig., 2004.
[15] H. H. Hsieh and L. H. Lu, “A low-phase-noise K-band CMOS VCO,” in IEEE Microwave & Wireless Components Lett., vol. 16, no. 10, pp.552-554, Oct. 2006.
[16] F.-H. Huang, C.-K. Lin, Y.-S. Wu, Y.-C. Wang, and Y.-J. Chan, “A W-band injection-locked frequency divider using GaAs pHEMTs and cascode circuit topology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 12, pp. 885–887, Dec. 2007.
[17] S. Kudszus, W. H. Haydl, M. Neumann, and M. Schlechtweg, “94/47-GHz regenerative frequency divider MMIC with low conversion loss,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1312–1316, Sep. 2000.
[18] J. Jeong and Y. Kwon, “V -band harmonic injection-locked frequency divider using cross-coupled FETs,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 10, pp. 457–459, Oct. 2004.
[19] Choi, Woo-Yeol Y., “Ultra-low-power series-feedback frequency divider using 0.15-μm GaAs pHEMT's at W-band” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 11, pp. 634–636, Nov. 2010.
[20] S. Gao, P. Butterworth, S. F. Ooi, and A. Sambell, “Microwave class-F power amplifier design including input harmonic terminations,” in Proc. 17nd Asia-Pacific Microwave Conf., Suzhou, China, Dec. 2005, pp.3360-3363.
[21] K. Chiba, and N. Kanmuri, “GaAs FET power amplifier module with high efficiency,” Electron. Lett., vol. 19, no. 24, pp. 1025–1026, Nov. 1983.
[22] T.-L. Lin, T.-H. Liu, and Y.-H. Kao, “Fabrication of high efficiency power amplifier module for cellular mobile phone,” in Proc. National Science Council Republic of China, Part A Physical Science Engineering, Nov. 1996. vol. 20, no. 6, pp. 651-659
[23] T. Nohima, S. Nishiki, and K. Chiba, “High-efficiency quasimicrowave GaAs FET power amplifier,” Electron. Lett., vol. 23, no. 10, pp. 512–513, May. 1987.
[24] M. Wren, and T. J. Brazil, “Experimental class-F power amplifier design using computationally efficient and accurate large-signal pHEMT model,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 5, pp. 1723-1731, May 2005.
[25] K. Aikawa, and K. Honjo, “Experimental verification of lumped element circuit synthesis method for class-F microwave amplifier using InGaP/GaAs HBT,” IEICE Trans. Electron., vol. E88-C, no. 12, pp. 2382-2384, Dec. 2005.
[26] M. Seki, R. Ishikawa, and K. Honjo, “Microwave class-F InGap/GaAs HBT power amplifier considering up to 7th-order higher harmonic frequencies,” IEICE Trans. Electron., vol. E89-C, no. 7, pp. 937-942, Jul. 2006.
[27] Cree, 10 W RF Power GaN HEMT CGH40010F Data Sheet, Cree Inc., North Carolina, USA, 1987 [Online] Available: http://www.cree.com/RF/Products/General-Purpose-Broadband-28-V/Packaged-Discrete-Transistors/CGH40010
[28] Y. Leng, Y. Zeng, L. Zhang, Y. Peng, G. Zhang, and J. Guan, “Transmission-line compensation circuit of parallel-circuit class-E power amplifier to extend maximum operating frequency,” Electron. Lett., vol. 48, no. 20, pp. 1284–1286, Sep. 2012.
[29] D. Wu and S. Boumaiza, “Comprehensive first-pass design methodology for high efficiency mode power amplifier,” IEEE Microwave Magazine, vol 11. issue 1, pp. 116-121, Feb. 2010.
[30] J. Moon, J. Kim, and B. Kim, “Investigation of a class-J power amplifier with a nonlinear Cout for optimized operation,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 11, pp. 2800-2811, Nov. 2010.
[31] Y. Xu, J. Wang, and X. Zhu, “Analysis and implementation of inverse class-F power amplifier for 3.5GHz transmitters,” in Proc. 22nd Asia-Pacific Microwave Conf., Yokohama, Japan, Dec. 2010, pp.410-413.

QR CODE