簡易檢索 / 詳目顯示

研究生: 劉思妤
Szu-Yu Liu
論文名稱: CBRS系統的代理人之基於傳輸連續性的動態通道分配演算法
Dynamic Channel Allocation for Continuity of Transmission in Domain Proxy assisted CBRS System
指導教授: 黃琴雅
Chin-Ya Huang
口試委員: 沈中安
Chung-An Shen
沈上翔
Shan-Hsiang Shen
陸敬互
Ching-Hu Lu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 53
中文關鍵詞: 公民寬頻無線電服務通道分配演算
外文關鍵詞: Citizens Broadband Radio Service, Channel Allocation Algorithm
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技進步,近年來無線資料流量每年都在持續增加,為了提供大量增加的資料流量和對各種應用的頻譜需求,公民寬頻無線電服務 (Citizens Broadband Radio Service, CBRS) 是一種解決方法。本論文根據代理人 (Domain Proxy) 實現在自我組織網路(self-organized networking, SON)服務器中的架構,利用SON的特性,使Domain Proxy能夠更有效的管理許多公民寬頻無線電服務設備(Citizens Broadband Radio Service Device, CBSD) ,並且代理CBSD向(Spectrum Access System, SAS)進行頻譜要求。此外,Domain Proxy也會擁有並管理一段CBRS頻譜的分配,並將管理的CBRS頻譜分配給其服務的CBSD。Domain Proxy必須針對不同優先權用戶頻譜使用權,進行分配。若在一次頻譜分配後,因為可能會有比某一個既有的CBSD還要更高優先權的CBRS用戶要使用頻譜,所以原本在使用此channel的CBSD需要將這個channel讓出來供高優先權CBRS用戶使用,這樣會造成原本某CBSD正在使用的channel不能夠再繼續使用,必須要重新向SAS索取新的channel的使用授權,藉著移動到其他channel進行頻譜使用。因此,在等待授權的期間這個被移動的CBSD少了CBRS channel,就無法讓連接到其的民眾使用良好的服務品質。
為了讓正在使用3.5 GHz頻譜的用戶能夠一直使用被分配到的通道 (channel),且同時滿足CBRS對於不同優先權用戶頻譜使用權與通訊傳輸干擾的要求,我們提出了最小化傳輸不連續性演算法 (Minimize Discontinuity of Transmission Algorithm, MDTA),在滿足CBRS用戶的優先權、先服務較早來的CBSD和一般許可接取使用者 (Generalized Authorized Access, GAA)受到其他同channel的GAA的必須干擾小於一個域值的條件下,來達到最小化CBSD被移動到其他channel的次數。MDTA考慮以上所敘述的三個條件,會先分配頻譜給先來的優先接取使用者 (Priority Access License, PAL),再分配給較晚來的PAL用戶,接著分配給先來的GAA用戶,最後分配給較晚來的GAA用戶。MDTA同時也考慮GAA受到其他同channel的GAA的干擾小於一個域值,讓GAA可以有效的使用頻譜資源。模擬結果顯示我們的方法減少了CBSD被移動到其他channel的次數,我們的方法比其他人的方法減少96~98%移動次數。


With the advancement of technology, wireless data traffic has continued to increase yearly. To provide a large amount of increased data traffic and spectrum requirements for various applications, Citizens Broadband Radio Service (CBRS) is a feasible solution. This thesis considers the architecture that Domain Proxy is implemented in the self-organized networking (SON) server and uses the characteristic of SON which enables Domain Proxy to manage many Citizens Broadband Radio Service Devices (CBSDs) more effectively. Domain Proxy can assist CBSDs to request the spectrum from Spectrum Access System (SAS). It will also own the SAS granted spectrum and manage the granted spectrum allocation to its served CBSD. Domain Proxy allocates the spectrum based on the priority of CBSDs. After a spectrum allocation, a higher priority CBRS user may want to use the spectrum, so the higher priority CBRS user will take the channel used by a lower priority CBSD. This will cause the channel originally used by a lower priority CBSD cannot continue to be used by that lower priority CBSD. This lower priority CBSD has to request a new channel from SAS to get another channel for further spectrum access. Therefore, without the CBRS channel, this low priority CBSD cannot provide good quality of service for its served mobile users while it is waiting for authorization.
To allow CBSDs continuously use the granted CBRS channel, we propose the Minimize Discontinuity of Transmission Algorithm (MDTA), aiming to minimize the number of times that CBSDs moved to other channels by three conditions which are the priority of CBRS users, the earlier joining time of CBSDs, and the GAA's interference caused by other GAAs. MDTA considers the priority of CBRS users first. Then, MDTA serves the earlier jointed CBSDs. MDTA will firstly allocate spectrum to the first-coming PALs, and then to the later PALs. Further, MDTA will allocate spectrum to the first-coming GAAs, and finally to the later GAAs. MDTA also considers that GAA's interference from other GAAs on the same channel needs to be less than a threshold, so that GAA can effectively use CBRS spectrum. The simulation results show that the proposed MDTA reduces the number of times CBSDs are moved to other channels. Specifically, the proposed MDTA reduces the number of moves by 96~98% compared with other methods.

中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 4 MDTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1 PAL Channel Allocation Algorithm . . . . . . . . . . . . . . . . . . . . 17 4.1.1 Allocated PALs Channel Reallocation Module . . . . . . . . . . 17 4.1.2 Moved PALs Channel Allocation Module . . . . . . . . . . . . . 17 4.1.3 Non-allocated PALs Channel Allocation Module . . . . . . . . . 17 4.2 GAA Channel Allocation Algorithm . . . . . . . . . . . . . . . . . . . . 21 4.2.1 GAA Channel Interference Analysis Method . . . . . . . . . . . 21 4.2.2 Channel Interference Minimization Method . . . . . . . . . . . . 21 4.2.3 Allocated GAAs Channel Reallocation Module . . . . . . . . . . 21 4.2.4 Moved GAAs Channel Allocation Module . . . . . . . . . . . . 23 4.2.5 Non-allocated GAAs Channel Allocation Module . . . . . . . . . 23 5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1 以模擬時間為100小時的隨機分布GAA位置 . . . . . . . . . . . . . . . 28 5.2 以模擬時間為49小時的常態分布GAA位置 . . . . . . . . . . . . . . . 32 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

[1] H. Huang, “Spectrum Sharing and SAS-CBSD Interface Simulation,” M.S. thesis, Dept. Sign. Proces. and Acoust., Aalto Univ., Finland, 2016.
[2] M. D. Mueck, S. Srikanteswara and B. Badi, Spectrum Sharing: Licensed Shared Access (LSA) and Spectrum Access System (SAS), Oct. 2015, [Online]. Available: http://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/spectrumsharing-lsa-sas-paper.pdf.
[3] C. W. Kim, J. Ryoo, and M. M. Buddhikot, “Design and implementation of an end-to-end architecture for 3.5 GHz shared spectrum,” in Proceedings of the 2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Sep. 29/Oct. 2, 2015, pp. 23-34.
[4] M. Palola et al., “Field trial of the 3.5 GHz citizens broadband radio service governed by a spectrum access system (SAS),” in Proceedings of the 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Mar. 6-9, 2017, pp. 1-9.
[5] M. Palola et al., “The first end-to-end live trial of CBRS with carrier aggregation using 3.5 GHz LTE equipment,” in Proceedings of the 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Mar. 6-9, 2017, pp. 1-2.
[6] M. M. Butt, I. Macaluso, E. A. Jorswieck, J. Bradford, N. Marchetti, and L. Doyle, “Spectrum matching in licensed spectrum sharing,” Transactions Emerging Telecommunications Technologies, vol. 29, 2018.
[7] A. Sahoo, “Fair resource allocation in the citizens broadband radio service band,” in Proceedings of the 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Piscataway, NJ, Mar. 6-9, 2017, pp. 1-2.
[8] K. B. S. Manosha et al., “A channel allocation algorithm for Citizens Broadband Radio Service/Spectrum Access System,” in Proceedings of the 2017 European Conference on Networks and Communications (EuCNC), Oulu, Jun. 12-15, 2017, pp. 1-6.
[9] X. Ying, M. M. Buddhikot, and S. Roy, “SAS-Assisted Coexistence-Aware Dynamic Channel Assignment in CBRS Band,” IEEE Transactions on Wireless Communications, vol. 17, no. 9, pp. 6307-6320, Sep. 2018.
[10] C. Xin, P. Paul, M. Song, and Q. Gu, “On Dynamic Spectrum Allocation in Geo-Location Spectrum Sharing Systems,” IEEE Transactions on Mobile Computing, vol. 18, no. 4, pp. 923-933, Apr. 2019.
[11] V. Frascolla et al., “Dynamic Licensed Shared Access - A New Architecture and Spectrum Allocation Techniques,” in Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Sep. 18-21, 2016, pp. 1-5.
[12] M. M. Butt, I. Macaluso, C. Galiotto, and N. Marchetti, “Fair Dynamic Spectrum Management in Licensed Shared Access Systems,” IEEE Systems Journal, vol. 13, no. 3, pp. 2363-2374, Sep. 2019.
[13] H. Shajaiah, A. Khawar, A. Abdel-Hadi, and T. C. Clancy, “Resource allocation with carrier aggregation in LTE Advanced cellular system sharing spectrum with S-band radar,” in Proceedings of the 2014 IEEE International Symposium on Dynamic Spectrum Access Networks (DYSPAN), McLean, VA, Apr. 1-4, 2014, pp. 34-37.
[14] H. Kim, Y. Lee, and S. Yun, “A dynamic spectrum allocation between network operators with priority-based sharing and negotiation,” in Proceedings of the 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, Berlin, Sep. 2-5, 2005, pp. 1004-1008.
[15] W. Lu, J. Wang, Y. Wu, J. Hua, and L. Meng, “Anti-interference cooperative spectrum sharing strategy with optimal bandwidth allocation,” in Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, Jun. 9-11, 2014, pp. 2160-2163.
[16] A. Kumar, A. Sengupta, R. Tandon, and T. C. Clancy, “Dynamic Resource Allocation for Cooperative Spectrum Sharing in LTE Networks,” IEEE Transactions on Vehicular Technology, vol. 64, no. 11, pp. 5232-5245, Nov. 2015.
[17] H. Gupta, M. Shaifur Rahman, and M. Curran, “Shared Spectrum Allocation via Pathloss Estimation in Crowdsensed Shared Spectrum Systems,” in Proceedings of the 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Newark, NJ, USA, Nov. 11-14, 2019, pp. 1-5.
[18] A. Abe and T. Fujii, “Dynamic Bandwidth Allocation for Spectrum Shared Private Mobile Networks Using Prior Measured CQI Information,” in Proceedings of the 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Newark, NJ, USA, Nov. 11-14, 2019, pp. 1-6.
[19] S. J. Kim, E. C. Kim, S. Park, and J. Y. Kim, “Dynamic spectrum allocation with variable bandwidth for cognitive radio systems,” in Proceedings of the 2009 9th International Symposium on Communications and Information Technology, Icheon, Sep. 28-30, 2009, pp. 106-109.
[20] G. Zhao, C. Yang, G. Y. Li, D. Li, and A. Soong, “Channel allocation for cooperative relays in cognitive radio networks,” in Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, Mar. 14-19, 2010, pp. 3258-3261.
[21] G. Lee, W. Na, L. Park, S. Cho, K. Kim, and S. Hwang, “Channel allocation scheme for cognitive radio systems,” in Proceedings of the 2010 Second International Conference on Ubiquitous and Future Networks (ICUFN), Jeju, Jun. 16-18, 2010, pp. 243-246.
[22] B. Zhang, K. Hu ,and Y. Zhu, “Spectrum Allocation in Cognitive Radio Networks Using Swarm Intelligence,” in Proceedings of the 2010 Second International Conference on Communication Software and Networks, Singapore, Feb. 26-28, 2010, pp. 8-12.
[23] J. J. Labrosse, “Real-time Systems Concepts,” in MicroC OS II: The Real Time Kernel, 2nd ed., Lawrence, USA, 2002, ch. 2, sec. 9, pp. 40-42.
[24] J. J. Labrosse, “Real-time Systems Concepts,” in MicroC OS II: The Real Time Kernel, 2nd ed., Lawrence, USA, 2002, ch. 2, sec. 10, pp. 42-43.
[25] K. N. Premnath and S. Rajavelu, “Challenges in self organizing networks for wireless telecommunications,” in Proceedings of the 2011 International Conference on Recent Trends in Information Technology (ICRTIT), Jun. 3-5, 2011, pp. 1331-1334.
[26] I. Raz, C. Williams, and D. Goedken, “WInnForum SAS Test Harness for CBSD UUT Tutorial”, WINNF-IN-0156 Version V1.0.0.1, Mar. 2018.
[27] Signaling Protocols and Procedures for Citizens Broadband Radio Service (CBRS): Spectrum Access System (SAS) - Citizens Broadband Radio Service Device (CBSD) Interface Technical Specification, WINNF-TS-0016 v.1.2.5, May 18, 2020.

無法下載圖示 全文公開日期 2025/08/31 (校內網路)
全文公開日期 2025/08/31 (校外網路)
全文公開日期 2025/08/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE