簡易檢索 / 詳目顯示

研究生: 張益華
Yi-Hua Chang
論文名稱: 藉由深度學習架構進行肺結節分類問題
Lung Nodule Classification via Deep Learning
指導教授: 花凱龍
Kai-Lung Hua
口試委員: 鄭文皇
Wen-Huang Cheng
金台齡
Tai-Lin Chin
陳永耀
Yung-Yao Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 34
中文關鍵詞: 深度學習肺結節分類深度學習網路卷積神經網路
外文關鍵詞: deep learning, nodule classification, deep belief network, convolutional neural network
相關次數: 點閱:349下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的電腦輔助診斷(CAD) 系統包含許多影像處理和圖形識別步驟去想出一個定量的腫瘤區別結果。在這樣特別的影像分析流程,每個階段都高度依賴著前一個步驟產生的結果。因此,在調整傳統CAD 系統的分類效果是非常複雜且困難的。另一方面,深度學習(deep learning) 擁有從本質上的優點,自動地開發特徵和用無縫方式調整效能。在本篇研究中,我們嘗試使用深度學習技術來簡化傳統的CAD 影像分析流程。具體來說,我們在CT 影像中的結節(nodule) 分類情境中導入deep believe network(DBN) 和convolutional neural network(CNN) 方法。實作了兩種基本的特徵抓取方法來做比較。實驗結果顯示深度學習方法達到更好的分類
    結果。因此證實了深度學習在CAD 應用方面的效用。


    Conventional computer-aided diagnosis (CAD) scheme comprises several image processing and pattern recognition steps to come up with a quantitative tumor differentiation result. In such an ad-hoc image analysis pipeline, every latter step highly depends on the performance of previous step. Accordingly, it turns out that the tuning of the classification performance in conventional CAD scheme is very complicated and arduous. The deep learning techniques, on the other hand, have intrinsically advantage of automatic exploit feature and performance tuning in a seamless fashion. In this study, we attempt to simplify the image analysis pipeline of conventional CAD with the deep learning techniques.
    Specifically, we introduce the models of deep believe network (DBN) and convolutional neural network (CNN) into the context of nodule classification in CT images. Two baseline methods with feature computing steps are implemented for comparison. The experimental results suggest the deep learning methods achieve better discriminative results. Accordingly, the effectiveness of deep learning techniques in CAD application domain is substantiated.

    論文摘要 - I Abstract - II 誌謝 - III 目錄 - IV 圖目錄 - V 表目錄 - VI 1 緒論 - 1 2 文獻回顧 - 4 3 研究方法 - 6 3.1 Autoencoder - 13 3.2 Restricted Boltzmann machine - 16 3.3 Deep Belief Network - 18 3.4 Convolutional Neural Networks - 19 3.5 Nodule Classification with DBN - 23 4 實驗結果 - 26 5 結論 - 30 參考文獻 - 32

    [1] K. Doi, “Computer-aided diagnosis in medical imaging: historical review, current status and future potential,” Computerized medical imaging and graphics, vol. 31, no. 4-5, pp. 198–211, 2007.
    [2] B. van Ginneken, C. M. Schaefer-Prokop, and M. Prokop, “Computer-aided diagnosis: how to move from the laboratory to the clinic,” Radiology, vol. 261, no. 3, pp. 719–732, 2011.
    [3] S. Singh, J. Maxwell, J. A. Baker, J. L. Nicholas, and J. Y. Lo, “Computer-aided classification of breast masses: performance and interobserver variability of expert radiologists versus residents,” Radiology, vol. 258, no. 1, p. 73, 2011.
    [4] J.-Z. Cheng, Y.-H. Chou, C.-S. Huang, Y.-C. Chang, C.-M. Tiu, K.-W. Chen, and C.-M. Chen, “Computer-aided us diagnosis of breast lesions by using cell-based contour grouping 1,” Radiology, vol. 255, no. 3, pp. 746–754, 2010.
    [5] A. Farag, A. Ali, J. Graham, S. Elshazly, and R. Falk, “Evaluation of geometric feature descriptors for detection and classification of lung nodules in low dose ct scans of the chest,” in Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on, pp. 169–172, IEEE, 2011.
    [6] A. Farag, J. Graham, and S. Elshazly, “Statistical modeling of the lung nodules in low dose computed tomography scans of the chest,” in Image Processing (ICIP), 2010 17th IEEE International Conference on, pp. 4281–4284, IEEE, 2010.
    [7] P.-L. Lin, P.-W. Huang, C.-H. Lee, and M.-T. Wu, “Automatic classification for solitary pulmonary nodule in ct image by fractal analysis based on fractional brownian motion model,” Pattern Recognition, vol. 46, no. 12, pp. 3279–3287, 2013.
    [8] T. W. Way, B. Sahiner, H.-P. Chan, L. Hadjiiski, P. N. Cascade, A. Chughtai, N. Bogot, and E. Kazerooni, “Computer-aided diagnosis of pulmonary nodules on ct scans: improvement of classification performance with nodule surface features,” Medical physics, vol. 36, no. 7, pp. 3086–3098, 2009.
    [9] V. C. Raykar, S. Yu, L. H. Zhao, A. Jerebko, C. Florin, G. H. Valadez, L. Bogoni, and L. Moy, “Supervised learning from multiple experts: whom to trust when everyone lies a bit,” in Proceedings of the 26th Annual international conference on machine learning, pp. 889–896, ACM, 2009.
    [10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
    [11] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.
    [12] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, et al., “Greedy layer-wise training of deep networks,” Advances in neural information processing systems, vol. 19, p. 153, 2007.
    [13] H.-I. Suk and D. Shen, “Deep learning-based feature representation for ad/mci classification,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, pp. 583–590, Springer, 2013.
    [14] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Unsupervised learning of hierarchical representations with convolutional deep belief networks,” Communications of the ACM, vol. 54, no. 10, pp. 95–103, 2011.
    [15] C. I. Henschke, E. A. Hoffman, E. A. Kazerooni, H. MacMahon, A. P. Reeves, B. Y. Croft, and L. P. Clarke, “Lung image database consortium: developing a resource for the medical imaging research community,” Radiology, vol. 232, pp. 739–748, 2004.
    [16] S. G. Armato III, G. McLennan, L. Bidaut, M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves, B. Zhao, D. R. Aberle, C. I. Henschke, E. A. Hoffman, et al., “The lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scans,” Medical physics, vol. 38, no. 2, pp. 915–931, 2011.
    [17] A. Farag, S. Elhabian, J. Graham, A. Farag, and R. Falk, “Toward precise pulmonary nodule descriptors for nodule type classification,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010, pp. 626–633, Springer, 2010.
    [18] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.
    [19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by backpropagating errors. MIT Press, Cambridge, MA, USA, 1988.
    [20] P. Smolensky, “Information processing in dynamical systems: Foundations of harmony theory,” 1986.
    [21] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.
    [22] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” The Journal of physiology, vol. 195, no. 1, pp. 215–243, 1968.

    無法下載圖示 全文公開日期 2019/08/04 (校內網路)
    全文公開日期 2024/08/04 (校外網路)
    全文公開日期 2024/08/04 (國家圖書館:臺灣博碩士論文系統)
    QR CODE