簡易檢索 / 詳目顯示

研究生: 劉晉瑜
Jin-Yu Liu
論文名稱: 搭配薄化原子層沉積雙層閘極絕緣層製作低操作電壓且高穩定性之金屬氧化薄膜電晶體的開發與研究
Development of Low Operating Voltage and High Stability Metal-Oxide Thin-Film Transistors with Thinning Bilayer Gate Insulator by Atomic Layer Deposition
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 劉舜維
Shun-Wei Liu
李志堅
Chih-Chien Lee
顏文正
Wen-Zheng Yan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 147
中文關鍵詞: 非晶氧化銦鋅錫原子層沉積薄膜電晶體二氧化鉿氧化鋁
外文關鍵詞: α-IZTO, Atomic layer deposition (ALD), Thin-film transistor (TFT), HfO2, Al2O3
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬氧化物薄膜電晶體(TFT)由於其高載子遷移率、高光學透明性、良好的均勻性和低製造溫度的出色性能,在未來顯示器與各種智能手機、電腦、感測器等電子產品中引起了廣泛的關注。對於新興的電晶體應用而言,低功耗及高穩定性是非常重要的,因為能夠延長裝置的使用壽命,因此需要開發具有較低工作電壓的薄膜電晶體。為了達到此目的,本論文透過薄化閘極氮化鉭(TaN)、降低閘極絕緣層厚度與選擇高介電係數,如二氧化鉿(HfO¬2)與氧化鋁(Al2O3)材料,來達到低操作電壓之效果。另外,也透過使用具有較高載子遷移率之氧化銦鋅錫(IZTO)當作主動層來降低功耗。除了壓低工作電壓外,薄膜電晶體不穩定的問題也需要解決,本論文透過原子層沉積(ALD)製程與雙層絕緣層結構來提升元件穩定性,透過原子層沉積製作之氧化鋁具有大能隙(8 eV)與較少的介面缺陷密度的特性,有效改善電晶體遲滯特性與提升元件穩定性。
    首先,我們利用原子層沉積製作氧化銦鋅錫薄膜電晶體之閘極絕緣層,分析不同閘極絕緣層薄膜厚度、材料比例與不同材料對於元件特性的影響,將不同閘極絕緣層參數之金屬氧化物薄膜電晶體進行電特性比較,以找出製作元件的最佳參數。再來,為了減少RC-Delay之影響,本論文嘗試將TaN閘極更換成低電阻率之Cu:Ag電極材料,探討其對薄膜電晶體電特性的影響,並分析造成電晶體優劣特性之原理。最後,比較不同參數之金屬氧化物薄膜電晶體的穩定度差異,找出具有最佳可靠性的條件。


    Metal oxide thin-film transistors (TFT) have attracted widespread attention in future displays and various electronic products. They have outstanding characteristics such as high carrier mobility, high optical transparency, good uniformity, and low fabrication temperature. For emerging transistor applications, low power consumption and high stability are very urgent. Therefore, thin-film transistors with lower operating voltage were developed to extend the life of the device. In this paper, the low operating voltage achieves by thinning tantalum mononitride (TaN), reducing the thickness of the gate insulator, and selecting high-k dielectric materials, such as hafnium oxide(HfO2) and aluminum oxide(Al2O3).In addition, the power reduces by using indium zinc tin oxide(IZTO) with high carrier mobility as the active layer. In addition to reducing the operating voltage, we use the atomic layer deposition (ALD) process and double-layer insulation structure to improve the stability of the device. Due to the large energy gap (8 eV) and less interface defect density, the Al2O3 can effectively improve the hysteresis characteristics of transistors and enhance the stability of devices.
    First, we fabricated the gate insulator of IZTO-TFT by atomic layer deposition and analyzed the influence of different thicknesses, material ratios, and material. The electrical characteristics of metal oxide thin-film transistors with different gate insulator parameters compare to find the best parameters. Furthermore, to reduce the effect of RC delay, we decided to change the gate electrode. We tried to use TaN to replace the low resistivity Cu: Ag electrode material. Discuss its influence on the electrical characteristics of thin-film transistors and analyze the principle of the pros and cons of the transistors Finally, the stability differences of various metal oxide thin-film transistors compared to find out the best reliability condition.

    論文摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 4 1.3 論文大綱 6 第二章 材料與製程介紹及理論基礎 7 2.1 高介電閘極絕緣層材料 7 2.1.1 元件尺寸的發展 7 2.1.2 高介電材料的興起 8 2.1.3 高介電材料的選擇 9 2.1.4 常見High-k材料的種類 12 2.1.5 高介電材料之製程方式 12 2.2 金屬氧化物半導體材料介紹 13 2.2.1 金屬氧化物半導體材料概述 13 2.2.2 非晶金屬氧化物半導體傳輸機制 13 2.2.3 非晶氧化銦鋅錫材料特性與電性影響 16 2.3 金屬氧化物薄膜電晶體結構 20 2.4 金屬氧化物薄膜電晶體操作模式 21 2.5 金屬氧化物薄膜電晶體之參數萃取方式 26 2.5.1 載子遷移率 (Mobility, μ) 26 2.5.2 臨界電壓 (Threshold Voltage, VTH) 28 2.5.3 次臨界斜率 (Subthreshold Swing, S.S) 29 2.5.4 開關電流比 (On/Off Current Ratio, Ion/Ioff) 30 2.5.5 接觸電阻 (Contact Resistance, RC) 31 2.5.6 I-V 特性量測 32 2.5.7 C-V電特性量測 33 2.6 薄膜材料特性分析 33 2.6.1 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 33 2.6.2 原子力顯微鏡 (Atomic Force Microscope , AFM) 34 2.6.3 四點探針量測儀 (Four-Point Probe) 35 2.6.4 紫外光/可見光光譜儀 (Ultraviolet/Visible Spectrophotometer, UV/VIS) 36 2.6.5 薄膜厚度輪廓測量儀 (Alpha-Step, α-step) 38 2.6.6 二次離子質譜儀分析 (Second Ion Mass Spectroscopy, SIMS) 39 2.6.7 X射線光電子能譜儀 ( X-ray Photoelectron Spectroscopy, XPS) 40 2.7 金屬氧化物薄膜電晶體之製程介紹 42 2.7.1 濺鍍法(Sputter) 42 2.7.2 熱蒸鍍法(Thermal Evaporation Deposition) 42 2.7.3 原子層沉積法(Atomic Layer Deposition, ALD) 42 第三章 調變閘極與絕緣層厚度改善電特性之研究 43 3.1 原子層沉積(ALD)介紹 43 3.1.1 原子層沉積技術之原理 43 3.1.2 原子層沉積之優劣比較 46 3.2 實驗說明 47 3.3 實驗步驟 48 3.4 不同厚度閘極之元件實驗分析 56 3.4.1 電容量測分析 56 3.4.2 接觸電阻分析 58 3.4.3 不同閘極厚度之薄膜電晶體電特性分析 59 3.4.4 不同閘極厚度之薄膜電晶體遲滯特性分析 64 3.5 不同閘極絕緣層厚度之元件實驗分析 70 3.5.1 不同閘極絕緣層厚度之薄膜電晶體電特性分析 70 3.5.2 不同閘極絕緣層厚度之薄膜電晶體遲滯特性分析 74 3.6 不同閘極絕緣層堆疊比例之元件實驗分析 77 3.6.1 不同閘極絕緣層堆疊比例之薄膜電晶體電特性分析 77 3.6.2 不同閘極絕緣層堆疊比例之薄膜電晶體遲滯特性分析 80 3.7 相同厚度不同閘極絕緣層元件實驗分析 82 3.7.1 相同厚度不同閘極絕緣層元件電特性分析 82 3.7.2 相同厚度不同閘極絕緣層元件遲滯特性分析 86 第四章 銅銀和氮化鉭元件之比較與電晶體穩定度分析 88 4.1 簡介 88 4.2 實驗說明 90 4.3 實驗步驟 90 4.4 不同材料閘極電晶體之實驗分析 96 4.4.1 銅銀閘極材料特性分析 96 4.4.2 不同閘極電晶體電特性分析 99 4.4.3 不同閘極電晶體遲滯特性分析 103 4.5 不同絕緣層參數或閘極製程之元件穩定度分析 105 4.5.1 在正閘極偏壓(Positive Gate Bias Stress, PGBS)劣化下元件可靠度之研究 106 4.5.2 在負閘極偏壓(Negative Gate Bias Stress, NGBS)劣化下元件可靠度之研究 112 第五章 結論與未來展望 118 5.1 結論 118 5.2 未來展望 120 參考文獻 121

    [1] Wager, J. F. "ZnO Transparent Thin-Film Transistor Device Physics," Science, vol. 300, no. 5623, pp. 1245-1246, 2003.
    [2] Nomura, K., Takagi, A., Kamiya, T., Ohta, H., Hirano, M. and Hosono, H., "Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors, Japanese Journal of Applied Physics, vol. 45, no. 5B, pp. 4303-4308, 2006.
    [3] Zoran Šego, Srećko Kunić, " OLED technology and displays," IEEE (ELMAR), 2012.
    [4] 王木俊、劉傳璽,”薄膜電晶體液晶顯示器原理與實務”,新北市,新文京開發出版 股份有限公司,2008.
    [5] Chung Jinkoo, Lee Joohyeon, Choi Junho, Park Chanyoung, " Transparent AMOLED Display Based on Bottom Emission Structure," Journal of the Society for Information Display, vol. 41, no.1, pp. 148-151, 2012.
    [6] Kim, T., Nam, Y., Hur, J., Park, S.-.K. and Jeon, S., "The Influence of Hydrogen on Defects of In-Ga-Zn-O Semiconductor Thin-Film Transistors with Atomic-Layer Deposition of Al2O3", IEEE Electron Device Letters, vol. 37, no. 9, pp. 1131-1134, 2016.
    [7] Nakata, M., Zhao, C. and Kanicki, J., "DC sputtered amorphous In-Sn-Zn-O thin-film transistors: Electrical properties and stability", Solid-State Electronics, vol. 116, pp. 22-29, 2016.
    [8] Choi W.-H., Kim, M., Jeon, W., Park, J.-S., "Investigating the interface characteristics of high-k ZrO2/SiO2 stacked gate insulator grown by plasma-enhanced atomic layer deposition for improving the performance of InSnZnO thin-film transistors", AIP Advances, vol. 10, no. 1, 2020.
    [9] Kang, A.Y., Lenahan, P.M., Conley Jr., J.F., "Electron spin resonance observation of trapped electron centers in atomic-layer-deposited hafnium oxide on Si", Applied Physics Letters, vol. 83, no. 16, pp. 3407-3409, 2003.
    [10] Chang, Y.-H., Yu, M.-J., Lin, R.-P., Hsu, C.-P. and Hou, T.-H., "Abnormal positive bias stress instability of In-Ga-Zn-O thin-film transistors with low-temperature Al2O3 gate dielectric", Applied Physics Letters, vol. 108, no. 3, 2016.
    [11] Marroun, A., Touhami, N.A., El Hamadi, T.-E., El Bakkali, M., "High-Performance Indium-Gallium-Zinc Oxide Thin-Film Transistors Based on Anodic Aluminum Oxide", Procedia Manufacturing, pp. 729, 2019.
    [12] The International Roadmap for Devices and Systems, " More Moore," IEEE International Roadmap for Devices and Systems, 2018.
    [13] Tsui, B. Y., and Chang, H. W., "Formation of the interfacial layer during reactive sputtering of hafnium oxide," Journal of Applied Physics, vol. 93, pp. 10119-10124, 2003.
    [14] Zurcher, P., Tracy, C. J., Alluri, P., Chu, P. Y., Jiang, P. Y., Kim, M., Melnick, B. M., Raymond, M. V., Roberts, M. V., Remmel, T. P., Tsai, T. P., White, B. E., Zafar, S. and Gillespie, S. J., "Barium Strontium Titanate Capacitors for Embedded Dram," Materials Research Society Symposium Proceedings, vol. 541, pp. 11-22, 1999.
    [15] Hubbard, K. J. and Schlom, K. J., "Thermodynamic stability of binary oxides in contact with silicon," Journal of Materials Research, vol. 11, no. 11, pp. 2757-2776, 1996.
    [16] Grill, A., "Electrode structures for integration of ferroelectric or high dielectric constant films in semiconductor devices," Materials Research Society Symposium Proceedings, vol. 541, pp. 89-99, 1999.
    [17] Zurcher, P., Tracy, C.J., Jones Jr., R.E., Alluri, P., Chu, P.Y., Jiang, B., Kim, M., Melnick, B.M., Raymond, M.V., Roberts, D., Remmel, T.P., Tsai, T.L., White, B.E., Zafar, S. and Gillespie, S.J., "Barium strontium titanate capacitors for embedded dram", Materials Research Society Symposium - Proceedings, vol. 541, pp. 11-22, 1999.
    [18] Cheng, B., Cao, M. C., Rao, R., Inani, A., Voorde, P. V., Greene, W. M., Stork, J. M. C., Yu, Z. and Woo, J. C. S., "The impact of High-k gate dielectrics and metal gate electrodes on Sub-100 nm MOSFETs," IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
    [19] Cho, M.-., Roh, Y.S., Whang, C.N., Jeong, K., Nahm, S.W., Ko, D.-., Lee, J.H. and Lee, N.I., "Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition", Applied Physics Letters, vol. 81, no. 3, pp. 472-474, 2002.
    [20] Whang, C.N., "Thickness dependence of Y2O3 films grown on an oxidized Si surface", Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, vol. 19, no. 1, pp. 200-206. 2001.
    [21] Mikhelashvili, V. and Eisenstein, G., "Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation", Journal of Applied Physics, vol. 89, no. 6, pp. 3256-3269, 2001.
    [22] Zheng, L.-., Qian, S.-., Wang, Y.-. and Liu, W.-., "Mobility and stability enhancement of amorphous In-Ga-Zn-O TFTs with atomic layer deposited Al2O3/SiO2 stacked insulators", IEEE Journal of the Electron Devices Society, vol. 4, no. 5, pp. 347-352, 2016.
    [23] Wilk, G. D., Wallace, R. M. and Anthony, J. M., "High-K gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, vol. 89, no. 10, pp. 5243-5275, 2001.
    [24] Robertson, J., "Band offsets of wide-band-gap oxides and implications for future electronic devices," Journal of Vacuum Science & Technology B, vol. 18, no. 3, pp. 1785-1791, 2000.
    [25] Kim, M., Jeong, H.-., Sheng, J., Choi, W.-., Jeon, W. and Park, J.-., "The impact of plasma-enhanced atomic layer deposited ZrSiOx insulators on low voltage operated In-Sn-Zn-O thin-film transistors", Ceramics International, vol. 45, no. 15, pp. 19166-19172, 2019.
    [26] Kim, J.B., Fuentes-Hernandez, C., Potscavage, W.J., Zhang, X.-.H, Kippelen, B., "Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition", Applied Physics Letters, vol. 94, no. 14, 2009.
    [27] Lee, S.Y., Chang, S. and Lee, J. S., "Role of high-k gate insulators for oxide thin-film transistors", Thin Solid Films, vol. 518, no. 11, pp. 3030-3032, 2010.
    [28] Lee, B.H., Kang, L., Qi, W., Nieh, R., Jeon, Y., Onishi, K. and Lee, J.C., "Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application", Technical Digest - International Electron Devices Meeting, pp. 133, 1999.
    [29] I. Barin,(1985), Thermochemical Data of Pure Substances, Weinheim, Federal Republic of Germany and New York: VCH.
    [30] Park, C.-., Kim, J.-. and Chun, J.S., "The effects of reaction parameters on the deposition characteristics in Al2O3CVD", Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, vol. 1, no. 4, pp. 1820-1824, 1983.
    [31] Choi, K.J., Shin, W.C. and Yoon, S.G., "Ultrathin HfO2 gate dielectric grown by plasma-enhanced chemical vapor deposition using Hf[OC(CH3)3]4 as a precursor in the absence of O2," Journal of Materials Research, vol. 18, no. 1, pp. 60-65, 2003.
    [32] Nowicki, S. G., "Properties of rf‐sputtered Al2O3 films deposited by a planar magnetron," Journal of Vacuum Science and Technology, vol. 14, no. 1, pp. 127-133, 1977.
    [33] Pereira, L., Marques, A., Águas, H., Nedev, N., Georgiev, S., Fortunato, E. and Martins, R., "Performances of hafnium oxide produced by radio frequency sputtering for gate dielectric application", Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 109, no. 1-3, pp. 89-93, 2004.
    [34] Wang, S.X., Wang, L.M., Ewing, R.C. and Doremus, R.H, "Ion beam-induced amorphization in MgO–Al2O3–SiO2. I. Experimental and theoretical basis," Journal of Non-Crystalline Solids, vol. 238, pp. 198-213, 1998.
    [35] Convertino, A., Valentini, A., Ligonzo, T. and Cingolani, R., "Organic-inorganic dielectric multilayer systems as high reflectivity distributed Bragg reflectors," Applied Physics Letters, vol. 71, p. 732, 1997.
    [36] Shamala, K.S., Murthy, L. C. S., and Narasimha Rao, K., "Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method," Materials Science and Engineering: B, vol. 106, no. 3, pp. 269-274, 2004.
    [37] Miyata, N., Ichikawa, M., Nabatame, T., Horikawa, T., and Toriumi, A., "Thermal stability of a thin HfO2/ultrathin SiO2/Si structure: Interfacial Si oxidation and silicidation", Japanese Journal of Applied Physics, Part 2: Letters, vol. 42, no. 2 B, pp. L138-L140, 2003.
    [38] akschik, S., Schroeder, U., Hecht, T., Gutsche, M., Seidl, H. and Bartha, J.W., "Crystallization behavior of thin ALD-Al2O3 films", Thin Solid Films, vol. 425, no. 1-2, pp. 216-220, 2003.
    [39] Ding, X., Zhang, J., Shi, W., Ding, H., Zhang, H., Li, J., Jiang, X., Zhang, Z. and Fu, C., "Effect of gate insulator thickness on device performance of InGaZnO thin-film transistors", Materials Science in Semiconductor Processing, vol. 29, pp. 326-330, 2015.
    [40] 章詠湟、陳智、彭智龍,”原子層沉積系統原理及其應用”,科儀新知,29(1),33-43, 2007.
    [41] Orita, M., Ohta, M., Hirano, M., Narushima, S. and Hosono, H., "Amorphous transparent conductive oxide InGaO3 (ZnO)m (m≤ 4): a Zn4s conductor," Philosophical Magazine Part B, vol. 81, no. 5, pp. 501-515, 2001.
    [42] Paine, D.C., Whitson, T., Janiac, D., Beresford, R., Yang, C.O. and Lewis, B., "A study of low-temperature crystallization of amorphous thin film indium-tin-oxide", Journal of Applied Physics, vol. 85, no. 12, pp. 8445-8450, 1999.
    [43] Yasukawa, M., Hosono, H., Ueda, N. and Kawazoe, H., "Novel transparent and electroconductive amorphous semiconductor: Amorphous AgSbO3 film", Japanese Journal of Applied Physics, vol. 34, no. 3, pp. L281-L284, 1995.
    [44] Zhou, X., Wang, S.-., Lian, G.-. and Xiong, G.-., "Growth of n-type ZnO thin films by using mixture gas of hydrogen and argon", Chinese Physics, vol. 15, no. 1, pp. 199-202, 2008.
    [45] Ogo, Y., Hiramatsu, H., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M. and Hosono, H., "P -channel thin-film transistor using p -type oxide semiconductor, SnO", Applied Physics Letters, vol. 93, no. 3, 2008.
    [46] Arca, E., Fleischer, K. and Shvets, I. V., "Magnesium, nitrogen codoped Cr2O3: A p-type transparent conducting oxide," Applied Physics Letters, vol. 99, no. 11, p. 111910, 2011.
    [47] Bosman, A. J. and Crevecoeur, A. J., "Mechanism of the Electrical Conduction in Li-Doped NiO," Physical Review, vol. 144, no. 2, pp. 763-770, 1966.
    [48] Look, D.C., Renlund, G.M., Burgener II, R.H. and Sizelove, J.R., "As-doped p-type ZnO produced by an evaporation/sputtering process", Applied Physics Letters, vol. 85, no. 22, pp. 5269-5271, 2004.
    [49] Tu, M. L., Su, Y. K. and Ma, C. Y., "Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering," Journal of Applied Physics, vol. 100, no. 5, p. 053705, 2006.
    [50] Ding, X., Qin, C., Xu, T., Song, J., Zhang, J., Jiang, X. and Zhang, Z., "Stability enhancement in InGaZnO thin-film transistor with a novel Al2O3/HfO2/Al2O3 as gate insulator", Molecular Crystals and Liquid Crystals, vol. 651, no. 1, pp. 235-242, 2017.
    [51] Kamiya, T., Nomura, K. and Hosono, H., "Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping," Journal of Display Technology, vol. 5, no. 7, pp. 273-288, 2009.
    [52] Hosono, H., "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, 2006.
    [53] Hosono, H., Yasukawa, M. and Kawazoe, H., "Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides," Journal of Non-Crystalline Solids, vol. 203, pp. 334-344, 1996.
    [54] Yu, W., Han, D., Li, H., Dong, J., Zhou, X., Yi, Z., Luo, Z., Zhang, S., Zhang, X. and Wang, Y., "Titanium doped zinc oxide thin-film transistors fabricated by co-sputtering technique", Applied Surface Science, vol. 459, pp. 345-348, 2018.
    [55] Tang, Q., Chen, X., Wan, J., Wu, H. and Liu, C., "Influence of Ga Doping on Electrical Performance and Stability of ZnO Thin-Film Transistors Prepared by Atomic Layer Deposition", IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3129-3134, 2020.
    [56] Hosono, H., Nomura, K., Y. Ogo, Y., Uruga, T. and Kamiya, T., "Factors controlling electron transport properties in transparent amorphous oxide semiconductors," Journal of NonCrystalline Solids, vol. 354, pp. 2796-2800, 2008.
    [57] Chiang, H.Q., Wager, J.F., Hoffman, R.L., Jeong, J. and Keszler, D.A., "High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer", Applied Physics Letters, vol. 86, no. 1, pp. 013503-1-013503-3, 2005.
    [58] Kamiya, T., Nomura, K. and Hosono, H., "Present status of amorphous In-Ga-Zn-O thin-film transistors", Science and Technology of Advanced Materials, vol. 11, no. 4, 2010.
    [59] Takechi, K., Nakata, M., Eguchi, T., Yamaguchi, H. and Kaneko, S., "Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors", Japanese Journal of Applied Physics, vol. 48, no. 1, 2009.
    [60] 戴亞翔,”TFT-LCD 面板的驅動與設計”,五南圖書出版社股份有限公司,2008.
    [61] Park, J.-., Jeong, J.K., Mo, Y.-., Kim, H.D. and Kim, C.-., "Control of threshold voltage in ZnO-based oxide thin-film transistors", Applied Physics Letters, vol. 93, no. 3, 2008.
    [62] Barquinha, P., Pereira, P., Gonalves, G., Martins, G. and Fortunato, E., "The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs," Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. H248-H251, 2008.
    [63] Jeong, J.H., Yang, H.W., Park, J.-., Jeong, J.K., Mo, Y.-., Kim, H.D., Song, J. and Hwang, C.S., "Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors", Electrochemical and Solid-State Letters, vol. 11, no. 6, pp. H157-H159, 2008.
    [64] Ide, K., Kikuchi, Y., Nomura, K., Kimura, M., Kamiya, T. and Hosono, H., "Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors", Applied Physics Letters, vol. 99, no. 9, 2011.
    [65] Barquinha, P., Vila, A.M., Gonçalves, G., Pereira, L., Martins, R., Morante, J.R. and Fortunato, E., "Gallium-indium-zinc-oxide-based thin-film transistors: Influence of the source/drain material", IEEE Transactions on Electron Devices, vol. 55, no. 4, pp. 954-960, 2008.
    [66] Yim, J.-., Jung, S.-., Yeon, H.-., Kwon, J.-., Lee, Y.-., Lee, J.-. and Joo, Y.-., "Effects of the metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor", Japanese Journal of Applied Physics, vol. 51, no. 1, 2012.
    [67] Cho, E. N., Kang, J. H. and Yun, I., "Contact resistance dependent scaling-down behavior of amorphous InGaZnO thin-film transistors," Current Applied Physics, vol. 11, no. 4, pp. 1015-1019, 2011.
    [68] Kim, H., Kim, K.-., Lee, S.-., Ryou, J.-. and Dupuis, R.D., "Low resistance Ti/Au contacts to amorphous gallium indium zinc oxides", Applied Physics Letters, vol. 98, no. 11. 2011.
    [69] Yim, J.-., Jung, S.-., Yeon, H.-., Kwon, J.-., Lee, Y.-., Lee, J.-. and Joo, Y.-., "Effects of the metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor", Japanese Journal of Applied Physics, vol. 51, no. 1, 2012.
    [70] Shimura, Y., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M. and Hosono, H., "Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes", Thin Solid Films, vol. 516, no. 17, pp. 5899-5902, 2008.
    [71] Kim, W.-., Moon, Y.-., Kim, K.-., Lee, J.-., Ahn, B.-. and Park, J.-., "An investigation of contact resistance between metal electrodes and amorphous gallium-indium-zinc oxide (a-GIZO) thin-film transistors", Thin Solid Films, vol. 518, no. 22, pp. 6357-6360, 2010.
    [72] Suntola, T., and Antson, J., " Method for producing compound thin films ", United States Patent, 4058430, 1977.
    [73] Kim, H., Lee, H.-.-. and Maeng, W.-., "Applications of atomic layer deposition to nanofabrication and emerging nanodevices", Thin Solid Films, vol. 517, no. 8, pp. 2563-2580, 2009.
    [74] Suntola, T., Pakkala, A. and Lindfors, A., " Method for producing compound thin films " United States Patent, 4413022, 1983.
    [75] Choi, S. N., Na, S.-. and Yoon, S. Y., "Proposals on Lower Thermal Budget Process for In-Ga-Zn-O Thin Film Transistor Using HfO2 Gate Insulators Prepared by Atomic-Layer Deposition at a Temperature of 150°C", AM-FPD 2019 - 26th International Workshop on Active-Matrix Flatpanel Displays and Devices: TFT Technologies and FPD Materials, 2019.
    [76] Fuh, C.-., Liu, P.-., Huang, W.-. and Sze, S.M., "Effect of annealing on defect elimination for high mobility amorphous indium-zinc-tin-oxide thin-film transistor", IEEE Electron Device Letters, vol. 35, no. 11, pp. 1103-1105, 2014.
    [77] Li, R., Dai, S., Su, J., Ma, J., Wang, Y., Zhou, D. and Zhang, X., "Effect of thermal annealing on the electrical characteristics of an amorphous IZTO:Li thin film transistor fabricated using the magnetron sputtering method," Materials Science in Semiconductor Processing, vol. 96, pp. 8-11, 2019.
    [78] Noviyana, I., Lestari, A.D., Putri, M., Won, M.-., Bae, J.-., Heo, Y.-. and Lee, H.Y., "High mobility thin-film transistors based on amorphous indium zinc tin oxide", Materials, vol. 10, no. 7, 2017.
    [79] Roman I. Kondratyuk, Kiju Im, Denis Stryakhilev, Chaun Gi Choi, Mu-Gyeom Kim, Huiwon Yang, HyeHyang Park, Yeon Gon Mo, Hye Dong Kim, and Sang Soo Kim, “A Study of Parasitic Series Resistance Components in In–Ga–Zn–Oxide (a-IGZO) Thin-Film Transistors,” IEEE Electron Device Letters,, Vol. 32, No. 4, pp. 503-505, 2011.
    [80] Miguel Dominguez, Pedro Rosales, Alfonso Torres, Jose A. Luna- Lopez, Francisco Flores and Mario Moreno, Metal-Semiconductor Interfaces in Thin-Film Transistors, Different Types of Field-Effect Transistors, DOI:10.5772/intechopen.68327, 2017.
    [81] Huang, S.-Y., Chang, T.-C., Chen, M.-.C, Jian, F.-Y., Chen, S.-C., Chen, T.-C., Jheng, J.-.L, Lou, M.-J. and Yeh, F.-S., "Analyzing the current crowding effect induced by oxygen adsorption of amorphous InGaZnO thin film transistor by capacitance-voltage measurements", Solid-State Electronics, vol. 69, pp. 11-13, 2012.
    [82] Zheng, L.-.L, Ma, Q., Wang, Y.-.H, Liu, W.-.J, Ding, S.-.J and Zhang, D.W., "High-Performance Unannealed a-InGaZnO TFT with an Atomic-Layer-Deposited SiO2 Insulator", IEEE Electron Device Letters, vol. 37, no. 6, pp. 743-746, 2016.
    [83] Chun, Y. S., Chang, Y. S. and Lee, S. Y., "Effects of gate insulators on the performance of a-IGZO TFT fabricated at room-temperature," Microelectronic Engineering, vol. 88, no. 7, pp. 1590-1593, 2011.
    [84] Li, G., Yang, B.-., Liu, C., Lee, C.-., Wu, Y.-., Lu, P.-., Deng, S., Shieh, H.-.D. and Xu, N., "Nitrogen-Doped Amorphous InZnSnO Thin-Film Transistors With a Tandem Structure for High-Mobility and Reliable Operations", IEEE Electron Device Letters, vol. 37, no. 5, pp. 607-610, 2016.
    [85] Lee, S.-., Kwon, J.-. and Han, M.-., "Investigation of photo-induced hysteresis and off-current in amorphous In-Ga-Zn oxide thin-film transistors under UV light irradiation", IEEE Transactions on Electron Devices, vol. 60, no. 8, pp. 2574-2579, 2013.
    [86] Lee, S.-., Kuk, S.-., Song, M.-. and Han, M.-., "The hysteresis and off-current of amorphous indium-gallium-zinc oxide thin-film transistors with various active layer thicknesses under the light illumination", Proceedings of the 19th International Workshop on Active-Matrix Flatpanel Displays and Devices - TFT Technologies and FPD Materials, AM-FPD 2012, pp. 151, 2012.
    [87] Lu, K., Peng, J., Zhang, J., Guo, D., Xiang, J., Lin, Z., Zhang, X., Wang, T., Ning, H. and Yao, R., "High-Performance and Flexible Neodymium-Doped Indium-Zinc-Oxide Thin-Film Transistor with All Copper Alloy Electrodes", IEEE Electron Device Letters, vol. 41, no. 3, pp. 417-420, 2020.
    [88] Kim, M., Jeong, H.-J, Sheng, J., Choi, W.-.H, and Jeon, W., "The impact of plasma-enhanced atomic layer deposited ZrSiOx insulators on low voltage operated In-Sn-Zn-O thin-film transistors", Ceramics International, vol. 45, no. 15, pp. 19166-19172, 2019.
    [89] Ji, C., Liu, D., Zhang, C. and Jay Guo, L., "Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%", Nature Communications, vol. 11, no. 1, 2020.
    [90] Sahu, D.R., Lin, S.-.Y and Huang, J.-.L, "Deposition of Ag-based Al-doped ZnO multilayer coatings for the transparent conductive electrodes by electron beam evaporation", Solar Energy Materials and Solar Cells, vol. 91, no. 9, pp. 851-855, 2007.
    [91] Lee, J.-.M, Cho, I.-.T, Lee, J.-.H and Kwon, H.-.I, "Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin-film transistors", Applied Physics Letters, vol. 93, no. 9, 2008.
    [92 Woo, W.J., Nam, T., Jung, H., Oh, I.-., Song, J.-., Lee, H.-.-., Maeng, W. and Kim, H., "Effects of TaN Diffusion Barrier on Cu-Gate ZnO: N Thin-Film Transistors", IEEE Electron Device Letters, vol. 37, no. 5, pp. 599-602, 2016.
    [93] Bukke, R.N., Avis, C., Naik, M.N. and Jang, J., "Remarkable Increase in Field-Effect Mobility of Amorphous IZTO Thin-Film Transistors with Purified ZrOx Gate Insulator", IEEE Electron Device Letters, vol. 39, no. 3, pp. 371-374, 2018.
    [94] Naik, B.R., Naik, M.N., Avis, C. and Jang, J., "Enhancement of TFT performance by purification of indium-zinc-tin oxide", AM-FPD, 2018.
    [95] Choi, W.-., Sheng, J., Jeong, H.-., Park, J.-., Kim, M. and Jeon, W., "Improved performance and stability of In-Sn-Zn-O thin film transistor by introducing a meso-crystalline ZrO2 high-k gate insulator", Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, vol. 37, no. 2, 2019.
    [96] Zhong, W., Yao, R., Chen, Z., Lan, L. and Chen, R., "Self-Assembled Monolayers (SAMs)/Al2O3 Double Layer Passivated InSnZnO Thin-Film Transistor", IEEE Access, vol. 8, pp. 101834-101839, 2020.
    [97] Lee, S.H., Oh, D.J., Hwang, A.Y., Park, J.W. and Jeong, J.K., "High-performance a-InZnSnO thin-film transistor with a self-diffusion-barrier formable copper contact", Thin Solid Films, vol. 637, pp. 3-8, 2017.
    [98] Ruan, D.-., Liu, P.-., Chiu, Y.-., Kan, K.-., Yu, M.-., Chien, T.-., Chen, Y.-., Kuo, P.-. and Sze, S.M., "Investigation of low operation voltage InZnSnO thin-film transistors with different high-k gate dielectric by physical vapor deposition", Thin Solid Films, vol. 660, pp. 885-890, 2018.
    [99] Sheng, J., Hong, T., Kang, D., Yi, Y., Lim, J.H. and Park, J.-., "Design of InZnSnO Semiconductor Alloys Synthesized by Supercycle Atomic Layer Deposition and Their Rollable Applications", ACS Applied Materials and Interfaces, vol. 11, no. 13, pp. 12683-12692, 2019.
    [100] Zhong, W., Yao, R., Liu, Y., Lan, L., and Chen, R., "Effect of Self-Assembled Monolayers (SAMs) as Surface Passivation on the Flexible a-InSnZnO Thin-Film Transistors", IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3157-3162, 2020.

    無法下載圖示 全文公開日期 2026/08/23 (校內網路)
    全文公開日期 2026/08/23 (校外網路)
    全文公開日期 2026/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE