簡易檢索 / 詳目顯示

研究生: 陳怡文
Yi-wen Chen
論文名稱: 加入渦輪碼的多通道通訊傳輸系統之功率分配
Power Allocation for Turbo Coded MulticarrierCommunication Systems
指導教授: 賴坤財
Kuen-tsair Lay
口試委員: 方文賢
Wen-hsien Fang
郭景明
Jing-ming Guo
呂福生
Fu-Sheng Lu.
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 67
中文關鍵詞: 渦輪碼功率分配正交分頻多工中繼放大與前傳子載波配對
外文關鍵詞: orthogonal frequency division multiplexing, turbo codes, power allocation, relay system, amplify-and-forward, subcarrier pairing
相關次數: 點閱:307下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線通訊已成為現今通訊的一大熱門議題。無線通訊系統的技術
    以正交分頻多工(OFDM) 為核心的技術不斷的發展,且正交分頻多
    工技術被廣泛的利用在新穎的標準無線通訊規格上,在本論文中我
    們所使用的多通道通訊系統即為正交分頻多工。通道編碼也是現今
    無線通訊中一大熱門議題。在嚴重雜訊與有限頻寬的無線衰減通道
    中傳輸,通道編碼為必要的技術。其中渦輪碼已被廣泛使用且證實
    擁有非常好的效能。渦輪碼的使用能有效的降低系統位元錯誤率。

    正交分頻多工系統能有效對抗無線傳輸中多路徑效應所造成的
    符元間干擾,藉由將整個可用頻寬分成多個子通道同時作訊號的傳
    輸,每個子通道有不同的振幅增益,為因應每一子通道擁有不同增
    益與雜訊影響,我們必須針對每一子通道決定在該子通道上分配所
    需之能量,使得整體效能有所改善。本論文所使用的功率分配方式
    是基於最佳化系統整體位元錯誤率在未使用錯誤更正碼情況下,接
    下來我們進而將系統加入錯誤更正碼機制-渦輪碼,並期望加入錯誤
    更正碼後搭配我們所提出的功率分配後其系統位元錯誤率亦可為最
    佳化,本論文也將針對多種不同功率分配做比較,經由模擬實驗證
    實我們所提出的功率分配能有較佳的系統效能。

    本論文我們亦探討放大與前傳的中繼正交分頻多工通訊系統,中
    繼系統的傳輸概念大量被運用到高速的無線通訊服務,可用來對抗
    通訊時的遮蔽或路徑損失降低錯誤率。我們基於實際通訊環境考量
    下在中繼系統中考量訊號源與中繼端有各自的總能量限制,我們同
    樣基於最小化系統位元錯誤率在系統未加錯誤更正碼情況下來做多
    通道的功率分配,並針對中繼系統的子載波不同配對方式做比較。
    接下來我們來做我們所提出的功率分配搭配子載波配對方式與其他
    的功率分配方式的系統效能比較,經由模擬實驗結果的呈現,系統
    搭配我們所提出的功率分配方式有較佳的錯誤率系統效能。


    Wireless communication is one hot topic in today's communication.
    Among the techniques for wireless communication, orthogonal frequency
    division multiplexing (OFDM) is the core technolology. It is under continous
    development and is included in many wireless communication protocols.
    In this thesis, the OFDM is effectively regarded as a multicarrier
    communication system. Channel coding is another important topic in today's
    wireless communication. It is an essential technique when the channel
    is noisy and fading . Among the channel coding techniques, turbo codes
    have been shown to exhibit excellent performance and are adopted widely.
    They can reduce the bit error rate (BER) in a significant fashion.

    OFDM is capable of fighting the inter-symbol interference (ISI) problem,
    which is majorly due to the multipath effect in wireless communication.
    In OFDM, the available spectrum is divided into many sunchannels.
    Each subchannel has its own amplitude gain. According to the influence
    of each subchannel and noise, we propose that differnet subchannels be
    allocated with different power. Through proper power allocation to the
    subchannels, we expect that the system performance can be improved. In
    this thesis, the power allocation we used is based on optimal BER of the
    system when there is no error correction coding in the system at first. Then
    we hope the BER performance is also optimal after imposing the error correction
    mechanism into the system.In our research we also compare the
    performance with various existing power allocation schemes. Through the
    simulation results it is confirmed that system with our power allocation produces the best performance.

    Another topic we investigate in this system is the use of amplify-andforward
    relay in the communication system. Relayed transmission has already
    found applications in high speed wireless communication service. It
    can be used to combat the shadow or the path loss to reduce the bit error
    rate. Through our thesis, it is assumed that the power at the source and
    the relay is separately constrained. We also allocate the power to the subchannels based on the minimization of the system bit error rate. Different
    subcarrier pairings are also tried and compared. Then, our power allocation
    method is combined with the best paring scheme. The combination turn out
    to produce very good BER performance as compared to other combinations
    of power allocation and pairing.

    第一章、緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 本文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 第二章、相關技術介紹. . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 無線通道特性. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 WiMax and 3GPP-LTE . . . . . . . . . . . . . . . . . . . . . . . .9 2.2.1 Wimax 概要. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 LTE 概要. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 正交分頻多工系統. . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 正交分頻多工技術簡介. . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 正交分頻多工系統架構. . . . . . . . . . . . . . . . . . . . . . 12 2.3.2.1 循環字首. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2.2 保護頻帶. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2.3 正交分頻多工系統的優缺點. . . . . . . . . . . . . . . . . . . 17 2.3.2.4 WiMax 的正交分頻多工系統參數. . . . . . . . . . . . . . . . . 18 2.4 二位元渦輪碼. . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.1 渦輪編碼器. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.2 BCJR 演算法與渦輪解碼器. . . . . . . . . . . . . . . . . . . . 22 2.5 多通道通訊傳輸之功率配置. . . . . . . . . . . . . . . . . . . . . 25 2.5.1 均等訊雜比功率分配(Equal SNR Power Allocation). . . . . . . . . 25 2.5.2 注水理論(Water-filling) . . . . . . . . . . . . . . . . . . . .27 第三章、OFDM 系統架構與功率分配. . . . . . . . . . . . . . . . . . . 30 3.1 AWGN 多通道通訊傳輸模型. . . . . . . . . . . . . . . . . . . . . 30 3.1.1 渦輪碼架構. . . . . . . . . . . . . . . . . . . . . . . . . . .31 3.1.2 數位調變. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1.3 功率分配. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.1 實驗環境及參數設定. . . . . . . . . . . . . . . . . . . . . . . 36 3.2.2 AWGN 多通道通訊傳輸功率分配之比較. . . . . . . . . . . . . . . 36 第四章、AF-OFDM 系統架構與功率分配. . . . . . . . . . . . . . . . . . 41 4.1 AF-OFDM 之接收架構. . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 最小化錯誤率之功率分配. . . . . . . . . . . . . . . . . . . . . . 44 4.3 位元權重之功率分配. . . . . . . . . . . . . . . . . . . . . . . . 48 4.4 實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4.1 實驗環境及參數設定. . . . . . . . . . . . . . . . . . . . . . . 50 4.4.2 AF-OFDM Relaying System 之子載波配對. . . . . . . . . . . . . . 51 4.4.3 功率分配機制比較. . . . . . . . . . . . . . . . . . . . . . . . 52 4.4.4 功率分配方式之二次求解分析. . . . . . . . . . . . . . . . . . . 55 4.4.5 位元權重功率分配比較. . . . . . . . . . . . . . . . . . . . . . 58 4.4.6 訊號源端與中繼端之功率分配. . . . . . . . . . . . . . . . . . . 61 第五章、結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    [1] C. Berrou and A. Glavieux, “Near optimum error correcting coding
    and decoding: Turbo-codes,”IEEE Trans. Commun., vol. 44,
    no. 10,pp. 1261 - 1271,Oct. 1996.
    [2] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
    codes for minimizing symbol error rate (corresp.),”IEEE Trans.
    Inform. Theory, vol. 20,no. 2, pp. 284 - 287, Mar. 1974.
    [3] R. Pabst, B. Walke, D. Schultz, P. Herhold, H. Yanikomeroglu,
    S. Mukherjee, H. Viswanathan, M. Lott, W. Zirwas, M. Dohler,
    H. Aghvami, D. Falconer, and G. Fettweis, “Relay-based deployment
    concepts for wireless and mobile broadband radio,”IEEE Commun.
    Magazine, vol. 42, pp. 80 - 89, Sep. 2004.
    [4] Z. Shen, X. Wang, and H. Zhang, “Power allocation and subcarrier
    pairing for ofdm-based af cooperative diversity systems,”inProc.
    IEEE Vehicular Technology Conf. , pp. 1 - 5, Apr. 2009.
    [5] M. Herdin, “A chunk based ofdm amplify-and-forward relaying
    scheme for 4g mobile radio systems,”IEEE Conf. Commun., vol. 10,
    pp. 4507 - 4512, June 2006.
    [6] B. Sklar, Digital Communications Fundamentals and Applications.
    Prentice-Hall, 2nd ed., 2001.
    [7] T. S.Rappaport, Wireless Communications. Prentice Hall, 2nd ed.,
    2002.
    [8] H. Holma and A. Toskala, WCDMA for UMTS: HSPA Evolution and
    LTE. John Wiley & Sons Inc, 5th ed., 2010.
    [9] A. G. J. G. Andrews, Fundamentals of WiMAX: Understanding
    Broadband Wireless Networking. Prentice Hall, 1st ed., 2007.
    [10] IEEE Standard 802.16-2004. Part 16: Air interface for fixed broadband
    wireless access systems. Oct. 2004
    [11] T.-D. Chiueh and P.-Y. Tsai, OFDM baseband receiver design for
    wireless communications. John Wiley and Sons (Asia), 1st ed., 2007.
    [12] R. Prasad, OFDM for Wireless Communications Systems. Boston-
    London, 1st ed., 2004.
    [13] S. Weinstein and P. Ebert, “Data transmission by frequency-division
    multiplexing using the discrete fourier transform,” IEEE Trans.
    Commu. Technology, vol. 19,no. 5, pp. 628 - 634, Oct. 1971.
    [14] C. T. Hung and K. T. Lay,“Data rate maximization under joint energy
    and dos constraints in multichannel communication,”IEICE Trans.
    Commun., vol. E85-B,no. 11, pp. 2369-2378, Nov. 2002.
    [15] U. R. Shu, Adaptive Hybrid Modulation and Coding in OFDM Systems.
    Master thesis, National Taiwan University of Science and Technology,
    2009.
    [16] T. M. Cover and J. A. Thomas, Elements Of Information Theory. A
    Wiley-Interscience, 1991.
    [17] R. G. Gallager, Information Theory and Reliable Communication.
    John Wiley & Sons, 1968.
    [18] J. G. Proakis, Digital Communication. New York: McGraw Hill,
    4th ed., 2000.
    [19] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier
    Methods. New York : Academic Press, 1982.
    [20] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, On the
    Lambert W function, vol. 5. Advances in Computational Mathematics,
    1996.
    [21] F. Li, G. Zhu, and D. Wang,“Joint optimization of opportunistic relaying
    and power allocation in cooperative OFDM networks,”Asia-
    Pacific Conf. Commun. , pp. 330 - 333, Oct. 2009.
    [22] F. Li, G. Zhu, D. Wang, and Y. Chen, “An adaptive transmission
    scheme for af-ofdm relaying systems with sub-carrier mapping,”
    in Pro. International Conf. Wireless Commun. WiCom ., pp. 1 - 4, Sep.
    2009.
    [23] Y. Li, W. Wang, J. Kong, and M. Peng, “Subcarrier pairing for
    amplify-and-forward and decode-and-forward ofdm relay links,”
    IEEE Commun. Letters, vol. 13,no. 4, pp. 209 - 211, Apr. 2009.

    QR CODE