簡易檢索 / 詳目顯示

研究生: 王鴻瑋
Hung-Wei Wang
論文名稱: RIN雜訊等效電路設計與EML光傳輸模組整合模擬
Co-Simulation of High Speed EML Transmitters with RIN Equivalent Circuits
指導教授: 李三良
San-Liang Lee
口試委員: 廖顯奎
Shien-Kuei Liaw
曹恆偉
Hen-Wai Tsao
楊淳良
Chun-Liang Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 光傳輸模組外部調變雷射相對強度雜訊共平面波導設計
外文關鍵詞: EML equivalent circuit, EML submount, Relative Intensity Noise, Coplanar-waveguide transmission line
相關次數: 點閱:437下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著網路科技的革新,人們開始追尋更快速、更高品質的傳輸方法,本篇論文根據多年來實驗室學長姐們所建立的EML等效小訊號模型進行模擬與優化,並利用曲線擬和的方法,在電路模擬上實現外調雷射電光轉換的非線性特性,設計出大訊號電路模型,接著使用軟體模擬傳輸線基板的頻率響應狀況,將傳輸線基板模型、打線模型以及前述設計的EML 小訊號與大訊號電路模型,進行模擬整合,得到完整的EML模組架構。
本篇論文透過半導體雷射等效電路的推導,設計出RIN相對雜訊的等效小訊號模型,並將其與實驗室量測到之RIN雜訊進行比對擬和,得到雜訊對應的眼圖變化。
最後將整合完成的EML模組進行各項匹配元件的優化,使實際量測的結果與模擬結果相吻合,實現 EML傳輸模組良好的效能表現,未來在面對更高的頻寬需求時,能修改EML電路模型與訊號走線的型式,藉此最佳化光傳輸模組的效能。


Along with the innovation of network technology, people is looking forward to pursue faster and higher-quality transmission methods. This thesis simulates and optimizes the equivalent circuit model of Electro-absorption modulated laser (EML) that established by the prior researchers of our lab. The polynomial equation is developed to model the measured P-V curve of the EML to account for its large-signal responses.
The submount of EML was simulated by using the 3-D electrosimul-ation software. Then, the submount model, bonding wire model, EML equivalent circuit model, and large-signal model, were combined to obtain performance of the EML module.
This thesis derived the noise equivalent circuit for the semiconductor laser diode of the EML and developed, the equivalent circuit of the relative intensity noise (RIN) in the laser. Then, simulated RIN spectrum was compared of relative with the measured RIN for the EML used in the experiment. Further, optimization on the impedance matching for the EML module was conducted to achive satisfactory bandwidth for the EML module. The approach can be applied to optimize the EML devices with higher data rates.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第1章 導論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻探討 4 1.4 論文架構 7 第2章 傳輸線基板模擬與比較 8 2.1 前言 8 2.2 傳輸線介紹 8 2.2.1 微帶線 8 2.2.2 帶狀線 10 2.2.3 共平面波導 11 2.3 激發端口比較 13 2.3.1 集總端口 13 2.3.2 波端口 15 第3章 調變雷射訊號介紹與EML模擬 17 3.1 前言 17 3.2 訊號調變方法 17 3.2.1 RZ歸零編碼 17 3.2.2 NRZ非歸零碼 18 3.2.3 四階脈衝振幅調變訊號 18 3.3 調變雷射介紹 20 3.4 光次傳輸模組之元件 22 3.5 EML小信號電路模型設計 23 3.6 EML大訊號電路 28 第4章 RIN雜訊電路設計與模擬 34 4.1 前言 34 4.2 相對強度雜訊 34 4.3 RIN雜訊等效電路設計 36 4.3.1 RIN雜訊公式推導與比對 36 4.3.2 RIN雜訊電路模擬 40 4.3.3 RIN雜訊眼圖模擬 44 第5章 光傳輸模組整合與模擬 45 5.1 前言 45 5.2 EML傳輸模組設計與模擬 45 5.2.1 模擬匹配電阻之頻率響應 48 5.2.2 模擬打線電感之頻率響應 50 5.2.3 模擬匹配電容之頻率響應 53 5.3 量測結果 55 5.4 量測結果分析 62 第6章 結論 65 6.1 成果探討 65 6.2 未來研究與展望 66 參考文獻 67

[1] E. Alliance. ( 2018). New 2018 Ethernet Roadmap Looks to Future Speeds of 1.6 Terabits.
Available:https://insidehpc.com/2018/03/new-2018-ethernet-roadmap-looks-future-speeds-1-6-terabits-s/
[2] Y. Wang, Y. Cheng, F. Zhou, H. Zhu, L. Zhao, and W. Wang, “Design of high frequency compensation submount for 40 Gbit/s lumped electroabsorption modulated lasers,” in Proc. OSA/ACP 2009.
[3] 邱譯緯, “EML等效電路設計與光傳輸模組整合模擬,” 國立台灣科技大學碩士論文,2018.
[4] 邱繹恩, “高速EML光傳輸模組整合模擬與優化,” 國立台灣科技大學碩士論文,2020.
[5] 羅科閔, “25 Gbaud/s PAM-4 調變電路整合於光傳輸模組,” 國立台灣科技大學碩士論文,2019.
[6] N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and Optical Coupling in an Electroabsorption Modulator Integrated With a DFB Laser, ” IEEE Journal of Quantum Electronics, vol. 43, no. 7, pp. 535-544, 2007.
[7] F. Deshours, C. Algani, F. Blache, G. Alquie, C. Kazmierski, and C. Jany, “New Nonlinear Electrical Modeling of High-Speed Electroabsorption Modulators for 40 Gb/s Optical Networks, ” Journal of Lightwave Technology, vol. 29, no. 6, pp. 880-887, 2011.
[8] C. Harder, J. Katz, S. Margalit, J. Shacham,and A.Yariv, “Noise Equivalent Circuit of a Semiconductor Laser Diode ”, IEEE Journal of Quantum Electronics, vol. QE-18, no. 3 , 1982.
[9] I. Rosu, “Microstrip, Stripline, CPW and SIW Design,” YO3DAC / VA3IUL,http://www.qsl.net/va3iul,https://zhuanlan.zhihu.com/p/44027031
[10] R. Garg, I. J. Bahl, M. Bozzi, Microstrip Lines and Slotlines, Third Edition, 2013
[11] M.Maxfield, “Traces vs. Microstrips vs. Striplines ” Available: https://www.eeweb.com/traces-vs-microstrips-vs-striplines/
[12] K. Chang, “Handbook of Microwave and Optical Components”, vol.1,John Wiley & Sons, New York, p. 30, 1989.
[13] Nikola T.(March 4, 2013). Retrieved January 17, 2019. Available: http://www.bitweenie.com/listings/microstip-vs-stripline/
[14] C. P. Wen, “Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications, ”IEEE Transactions on Microwave Theory and Techniques, vol.17, no. 12, Dec 1969.
[15] M.Bailey(Sep 14, 2011). Retrieved January 17, 2019. Available: https://www.eeweb.com/app-notes/layout-guidelines-for-rf-and-mixed-signal-pcbs
[16] J.R. Miller, “Examining The Impact of Split Planes on SI, PI”, DesignCon.2009
[17] E.Zhang, “HFSS-Waveport vs. Lumped port” Available: https:// zhuanlan.zhihu.com/p/44027031
[18] Ansoft, Port Tutorial Series: Coplanar Waveguide (CPW).HFSS v8 Training, 2005.
[19] A. Healey, Ch. Morgan and M.Shanbhag “Beyond 25 Gbps:A Study of NRZ & Multi-Level Modulation in Alternative Backplane Architecture, ” DesignCon,2013.
[20] J. Wei, Q. Cheng, R. V. Penty, I. H. White, D. G. Cunningham, “400
Gigabit Ethernet Using Advanced Modulation Formats: Performance, Complexity, and Power Dissipation,” IEEE Communications Magazine, vol. 53, no. 2, 2015, pp. 182-189
[21] 吳奇璋, “分佈反饋式雷射與行波式電致吸收調變器積體化元件製作”,國立台灣科技大學碩士論文,2010
[22] N. Qi, X. Xiao, S. Hu, M. Li, H. Li, Z. Li, and P. Chiang, “A 32 Gb/s NRZ, 25 GBaud/s PAM4 reconfigurable, Si-Photonic MZM transmitter in CMOS, ” in 2016 Optical Fiber Communications Conference and Exhibition (OFC), 2016, pp. 1-3.
[23] O. Kibar, D. Van Blerkom, C. Fan, P. J. Marchand, and S. C. Esener, “Small-signal-equivalent circuits for a semiconductor laser, ” Applied Optics, vol. 37, no. 26, pp. 6136-6139, 1998/09/10 1998.
[24] Keysight, Lightwave Signal Analyzers Measure Relative Intensity Noise, Product Note 71400-1
[25] Tektronix,Performing RIN and RIN OMA Measurements on the DSA8300 Sampling Oscilloscope
[26] L. A. Coldren, S. W. Corzine, M. L. Mašanovic´, Diode Lasers and Photonic Integrated Circuits , Second Edition, 2012
[27] O. K. Kwon, Y. T. Han, Y. S. Baek, and Y. C. Chung, “Improvement of modulation bandwidth in electroabsorption-modulated laser by utilizing the resonance property in bonding wire”, “Optics Express, vol. 20, no. 11, pp. 11806-11812, 2012/05/21 2012
[28] G. L. Li, P. K. L. Yu, W. S. C. Chang, K. K. Loi, C. K. Sun, and S. A. Pappert, “Concise RF equivalent circuit model for electroabsorption modulators, ” Electronics Letters, vol. 36, no. 9, pp. 818-820, 2000.

無法下載圖示 全文公開日期 2026/09/22 (校內網路)
全文公開日期 2026/09/22 (校外網路)
全文公開日期 2026/09/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE