簡易檢索 / 詳目顯示

研究生: 曾柏智
Po-Chih Tseng
論文名稱: 以固態發泡法製備聚甲基丙烯酸甲酯奈米泡材之發泡行為與性質探討
Foaming Behavior and property of Poly(methyl methacrylate) Nanocellular Foam fabricated by Solid State Foaming
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 楊申語
Sen-Yeu Yang
胡孝光
Shiaw-Guang Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 135
中文關鍵詞: 奈米孔徑高分子發泡材料熱壓發泡批式發泡
外文關鍵詞: nanocellular foam, polymeric foam, compression molding, batch foaming
相關次數: 點閱:294下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

低密度微孔發泡材的重要性多年來已在許多應用領域得到證明,而奈米多孔材料相對於微孔以及傳統泡材,其絕熱,光學,聲學和結構上等的獨特性質,引起了學者的研究與興趣。
本實驗使用PMMA並以氣體溶解技術生產奈米泡孔高分子,在固定含浸壓力(2000 psi)的條件下,降低含浸溫度(0°C至- 30°C),探討其對高分子發泡之影響。為此,發泡步驟在熱壓機與熱水中進行,並且比較兩者熱傳的差異以及對於最終泡孔結構的影響;我們發現,不論是熱壓或熱水發泡,最小的孔徑都可以達到35 nm左右。本實驗藉由COMSOL軟體的模擬可得知,熱水發泡的熱傳較熱壓快,並藉由熱水熱傳較快造成相對密度差異、殼層厚度較薄、過渡層厚度較薄、泡孔大小縮小等性質。另外熱壓發泡的樣品,因為製備樣品過程中的壓延造成流動,泡孔會明顯的延伸拉長,造成長徑比從1.4上升至約1.6。
在物理性質方面,我們探討了泡孔以及相對密度對於泡材熱傳與光學性質所造成的變化,在熱傳性質上使用Gibson and Ashby 模型進行估算,在固定泡孔為50 nm的情況下,熱導率依不同相對密度做圖,並且發現本實驗結果與趨勢符合其模型的估算。在光學性質方面,高分子奈米泡材的透光率會根據泡孔大小不同而有變化,也就是以瑞利散射為主導機制,解釋了泡孔對於透光率的影響;比較三種同泡孔69 nm、58 nm、37 nm但相似相對密度下之透光率,的泡孔越小透光率越高。在相對密度影響上,比較兩種不同相對密度0.4和0.8但泡孔相似的透光率,發現相對密度越高,可見光的透光率越高。


Polymeric foam with a cell size of nanometer range has attracted lots of attention because of its superior physical and mechanical properties than microcellular foams. Poly(methyl methacrylate) (PMMA) has been widely used to fabricate the nano-cellular foam due to its high affinity to CO2. In this study, nanocellular foams were fabricated by solid-state foaming with saturation temperature (Tsat) ranging from 0°C to - 30°C and a foaming temperature (Tfoam) of 60°C, 80°C, and 100°C.
The foams in this study were prepared by either a thermal bath or hot press. The final cellular structure for both foaming steps is studied to compare the difference between two different foaming process. In both cases, the cell size decreased as Tsat went down and. The smallest cell size obtained can be as small as 35 nm. Besides, the heat transfer conditions are simulation using COMSOL Multiphysics® Modeling Software. The results show that heat conduction of the hot water bath is faster than that of hot press, which leads to smaller cell size and thinner solid skin. On the other hand, the cell aspect ratio for hot press foaming is higher than that prepared by a hot water bath due to the restriction of the plates and the flow field created during the press.
The physical properties of the foams prepared by the hot water bath were explored. The changes in thermal and optical properties with cell size and relative density were studied. The Gibson and Ashby model was applied to estimate the thermal conduction coefficient. The model fits properly with our experiment data. For the optical property, our results showed that the small cell size and high relative density result in high transmittance of the Ultraviolet-Visible spectrum.

摘要 I Abstract III 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1前言 1 第二章 文獻回顧 4 2.1高分子發泡材料 4 2.1.1 高分子發泡材料之分類 4 2.1.2 從傳統泡材到微米與奈米的發泡材料 5 2.2奈米泡材的物理性質 7 2.2.1泡材機械性質 7 2.2.2泡材聲學性質 9 2.2.3泡材絕熱性質 10 2.2.4泡孔造成的光散射 12 2.3製備奈米泡材 18 2.3.1聚甲基丙烯酸甲酯 18 2.4 發泡過程簡介 19 2.4.1發泡機制 21 2.4.1.1成核與成長(nucleation and growth) 25 2.4.1.2泡孔成核 26 2.4.1.3均相成核(homogeneous nucleation) 27 2.4.1.4異相成核(heterogeneous nucleation) 28 2.4.1.5泡孔成長 31 2.4.1.6調幅分解(Spinodal Decomposition) 32 2.4.2以二氧化碳作為發泡劑 33 2.4.2.1二氧化碳於高分子中的溶解度 34 2.4.2.2氣體擴散與溶解 36 2.4.2.3溶解度的量測 - Mass-loss analysis 37 2.4.3發泡製程 39 2.4.3.1批式發泡法 39 2.4.4 二氧化碳對高分子玻璃轉移溫度影響 41 第三章 實驗方法 45 3.1實驗藥品 45 3.2實驗儀器 46 3.3實驗步驟 48 3.3.1熱壓成型 49 3.3.2 批式發泡-熱水發泡 49 3.3.3 批式發泡-熱壓發泡 50 3.3.4溶解度量測 51 3.3.5表面研磨拋光 52 3.4測量方法 53 3.4.1泡材密度測量 53 3.4.2場發射雙束型聚焦離子束顯微鏡(FIB) 53 3.4.3 泡孔孔徑 54 3.4.5 泡孔密度 55 3.4.5 透光率之量測 56 3.4.6 COMSOL模擬 56 第四章 結果與討論 59 4.1材料性質分析 59 4.2 含浸溫度對擴散速率的影響 60 4.2.1含浸溫度對溶解度之影響 61 4.2.2以低溫含浸法製備奈米泡材 62 4.2.2.1熱水發泡 65 4.2.2.2熱壓發泡 67 4.2.3 不同製程之發泡比較 70 4.2.3.1熱傳之差異 71 4.2.3.2相對密度之差異 77 4.2.3.3殼層厚度(solid skin)與過渡層(transition layer)之差異 77 4.2.3.4泡孔長徑比之差異 79 4.2.3.5泡孔大小之差異 80 4.2.3.6發泡過程相分離之差異 81 4.3奈米泡材之物理性質 87 4.3.1奈米泡材熱導率估計 87 4.3.2泡材透光率之探討 94 4.3.2.1泡孔大小之影響 95 4.3.2.2相對密度之影響 99 第五章 結論 103 參考文獻 104 附錄 118

1. Polymer Foam Market Size, Share & Trends Analysis Report by Type (Polyurethane, Polystyrene, Polyolefin, Melamine, Phenolic, PVC), by Application, By Region, And Segment Forecasts, 2019 – 2025, available from: https://www.grandviewresearch.com/industry-analysis/polymer-foam-market.
2. Polymer Foam Market Size, Share & Trends Analysis Report by Type (Polyurethane, Polystyrene, PVC, Phenolic, Polyolefin, Melamine), by Application, By Region, And Segment Forecasts, 2018 - 2024; Available from: https://www.businesswire.com/news/home/20181107005405/en/Global-Polymer-Foam-Market-Size-Share-Trends.
3. Notario B, Pinto J, Rodriguez-Perez M.A. Nanoporous polymeric materials: A new class of materials with enhanced properties. Progress in Materials Science, 2016. 78-79: p. 93-139.
4. Costeux S. CO2-blown nanocellular foams. Journal of Applied Polymer Science, 2014. 131(23): p. 41293.
5. Goel S.K, Beckman E.J. Generation of microcellular polymeric foams using supercritical carbon dioxide. II: Cell growth and skin formation. Polymer Engineering & Science, 1994. 34(14): p. 1148-1156.
6. Gedler G, Antunes M, Velasco J.I. Polycarbonate foams with tailor-made cellular structures by controlling the dissolution temperature in a two-step supercritical carbon dioxide foaming process. The Journal of Supercritical Fluids, 2014. 88: p. 66-73.
7. Nadella K, Kumar V, Li W. Constrained solid-state foaming of microcellular panels. Cellular Polymers, 2005. 24(2): p. 71-90.
8. Jiang X, Zhao L, Feng L, Chen C. Microcellular thermoplastic polyurethanes and their flexible properties prepared by mold foaming process with supercritical CO2. Journal of Cellular Plastics, 2019, 55(6): p. 615-631.
9. Liu P.S, Chen G.F. Chapter One – Chapter 1 General Introduction to Porous Materials, in Porous Materials, Liu P S, Chen G F. Editors. 2014, Butterworth-Heinemann: Boston. p. 1-20.
10. Di Maio E, Kiran E. Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. The Journal of Supercritical Fluids, 2018. 134: p. 157-166.
11. Pinto J, Dumon M, Rodriguez-Perez M.A. Chapter 9 Nanoporous polymer foams from nanostructured polymer blends: Preparation, characterization, and properties, in Recent Developments in Polymer Macro, Micro and Nano Blends: Preparation and Characterization, Visakh P M, Markovic G, Pasquini D, Editors 2016. p. 237-288.
12. Modern Styrenic Polymers: Polystyrenes and Styrenic Copolymers, Scheirs J, Priddy, D B, Editors, John Wiley & Sons, Ltd, 2003
13. Feldman D. Polymer History. Designed Monomers and Polymers, 2008. 11(1): p. 1-15.
14. Kumar V, Microcellular polymers: Novel materials for the 21st century. Progress in rubber and plastics technology, 1993. 9(1): p. 54-70.
15. Colton J.S, Suh N.P, Nucleation of microcellular foam: Theory and practice. Polymer Engineering and Science, 1987. 27(7): p. 500-503.
16. Okolieocha C, Raps D, Subramaniam K, Altstädt V, Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review. European Polymer Journal, 2015. 73: p. 500-519.
17. Nofar M, Park C.B. - Introduction to Plastic Foams and Their Foaming, in Polylactide Foams, Nofar M, Park C B, Editors. 2018, William Andrew Publishing. p. 1-16.
18. Mishra R, Militky J, Venkataraman M, Chapter 7 - Nanoporous materials, in: Mishra R M J, Editors, Nanotechnology in Textiles. Woodhead Publishing, 2019. p. 311-353.
19. Zuber A.A, Klantsataya E, Bachhuka A, Volume 3 Chapter 6 - Biosensing, in Comprehensive Nanoscience and Nanotechnology 2nd edition, Andrews D, Lipson R, Nann T, Editors. 2019, Academic Press: Oxford. p. 105-126.
20. Costeux S, Zhu L. Thermoplastic nanocellular foams with low relative density using CO2 as the blowing agent. 9th International Conference on Foam Processing and Technology, FOAMS 2011; Iselin, NJ; United States; 09/14/2011~09/15/2011.
21. Miller D, Chatchaisucha P, Kumar V. Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide I. Processing and structure. Polymer, 2009. 50(23): p. 5576-5584.
22. Notario B, Pinto J, Rodríguez-Pérez M.A. Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties. Polymer, 2015. 63: p. 116-126.
23. Reglero Ruiz J.A, Dumon M, Pinto J, Rodriguez-Pérez M.A. Low-density nanocellular foams produced by high-pressure carbon dioxide. Macromolecular Materials and Engineering, 2011. 296(8): p. 752-759.
24. Notario B, Ballesteros A, Pinto, J, Rodríguez-Pérez M.A. Nanoporous PMMA: A novel system with different acoustic properties. Materials Letters, 2016. 168: p. 76-79.
25. Ayub M, Zander A.C, Howard C.Q, Cazzolato B.S, Huang D.M. A review of MD simulations of acoustic absorption mechanisms at the nanoscale. Proceedings of Acoustics 2013, 2013: p. 17-20.
26. Cao X, Dai X, Liu J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy and Buildings, 2016. 128: p. 198-213.
27. Lu X, Caps R, Fricke J, Alviso C.T, Pekala R.W. Correlation between structure and thermal conductivity of organic aerogels. Journal of Non-Crystalline Solids, 1995. 188(3): p. 226-234.
28. Schmidt D, Raman V, Egger C, du Fresne C, Schädler V. Templated cross-linking reactions for designing nanoporous materials. Materials Science and Engineering: C, 2007. 27(5-8): p. 1487-1490.
29. Stehr J. Chemical Blowing Agents in the Rubber Industry. Past – present – and future? International Polymer Science and Technology, 2016. 43(5): p. 1-10.
30. Martín-de León J, Pura J, Bernardo V, Rodríguez-Pérez M.Á. Transparent nanocellular PMMA: Characterization and modeling of the optical properties. Polymer, 2019. 170: p. 16-23.
31. Acharya R. Chapter 3 - Interaction of waves with medium, in satellite signal propagation, impairments and mitigation, R. Acharya, Editor. 2017, Academic Press. p. 57-86.
32. Costello M J, Johnsen S, Gilliland K O, Freel C D. Fowler W.C. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory. Investigative Ophthalmology and Visual Science, 2007. 48(1): p. 303-312.
33. Pisal A A, Venkateswara Rao A. Development of hydrophobic and optically transparent monolithic silica aerogels for window panel applications. Journal of Porous Materials, 2017. 24(3): p. 685-695.
34. Seinfeld J.H, Pandis S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 3rd Edition. Chapter 15.1.1. 2016: John Wiley and Sons, New Jersey.
35. Lockwood D J. Rayleigh and Mie Scattering, in Encyclopedia of Color Science and Technology, M.R. Luo, Editor. 2016, Springer New York: New York, NY. p. 1097-1107.
36. Uchikoshi T, Itakura A, Matsunaga C, Ishigaki T. UV protection mechanism and property of functional Ceramic Particles. Vol. 35. 2014. 45-49.
37. Willis M. Rain Scatter. 2006; Available from: http://www.mike-willis.com/Tutorial/rainscatter.htm.
38. Malcom P S. Polymer Chemistry: An Introduction. 3rd ed. Oxford University Press: NY, 1999: p. pp 167–176, 256–276.
39. Ali U, Karim K.J.B.A, Buang N.A. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polymer Reviews, 2015. 55(4): p. 678-705.
40. Nien Y H, Lin S W, Hsu Y N. Preparation and characterization of acrylic bone cement with high drug release. Materials Science and Engineering: C, 2013. 33(2): p. 974-978.
41. Tai Y, Wang L, Gao J, Amer W.A, Wenbing D, Haojie Y, Synthesis of Fe3O4@poly(methylmethacrylate-co-divinylbenzene) magnetic porous microspheres and their application in the separation of phenol from aqueous solutions. Journal of Colloid and Interface Science, 2011. 360(2): p. 731-738.
42. Girish K G, Munichandraiah N. Poly(methylmethacrylate)—magnesium triflate gel polymer electrolyte for solid state magnesium battery application. Electrochimica Acta, 2002. 47(7): p. 1013-1022.
43. Coelho, P H D.S., Marchesin M S, Morales A, Bartoli J R. Electrical percolation, morphological and dispersion properties of MWCNT/PMMA nanocomposites. Materials Research, 2014. 17: p. 127-132.
44. Rachellowe. NMR of PMMA – tacticity and its determination through NMR. 2017, 3rd May ; Available from: https://www.impact-solutions.co.uk/nmr-of-pmma/.
45. Zhuang W, Kiran E. Kinetics of pressure-induced phase separation (PIPS) from polymer solutions by time-resolved light scattering. Polyethylene + n-pentane. Polymer, 1998. 39(13): p. 2903-2915.
46. Liu J, Yu X, Xue L, Han Y. Chapter 16 Morphology control of polymer thin films, in Polymer Morphology: Principles, Characterization, and Processing, Qipeng Guo editor, 2016. p. 299-316.
47. Chapter 9 Thermodynamics of Polymer Mixutres, in Fundamentals of Polymer Engineering, Kumar A, Gupta, R. K. CRC Press, 2018
48. Xue L, Zhang J, Han Y, Phase separation induced ordered patterns in thin polymer blend films. Progress in Polymer Science, 2012. 37(4): p. 564-594.
49. Zhang L. The study of phase separation in the miscibility gap and ion specific effects on the aggregation of soft matter system. Ph.D. Dissertation, Université Paris-Saclay; Northwestern Polytechnical University (China), 2016.
50. Sarkar S, Banerjfe S, Roy S, Ghosh R, Ray P.P, Bagchi B. Composition dependent non-ideality in aqueous binary mixtures as a signature of avoided spinodal decomposition. Journal of Chemical Sciences, 2015. 127(1): p. 49-59.
51. Kiran E, Zhuang, W. Miscibility and Phase Separation of Polymers in Near- and Supercritical Fluids. In Supercritical Fluids, 1997: American Chemical Society, Vol. 670, pp. 2-36
52. Leung S N, Wong A, Guo Q, Park C B, Zong J H. Change in the critical nucleation radius and its impact on cell stability during polymeric foaming processes. Chemical Engineering Science, 2009. 64(23): p. 4899-4907.
53. Forest C, Chaumont P, Cassagnau P, Swoboda B, Sonntag P. Polymer nano-foams for insulating applications prepared from CO2 foaming. Progress in Polymer Science, 2015. 41: p. 122-145.
54. Colton J S, Suh N P. The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polymer Engineering and Science, 1987. 27(7): p. 485-492.
55. Smallman R E, and Ngan A H W. Chapter 3 - Solidification, in Modern Physical Metallurgy (Eighth Edition), R.E. Smallman and A.H.W. Ngan, Editors. 2014, Butterworth-Heinemann: Oxford. p. 93-119.
56. Callister W D Retwisch, D G. Fundamentals of Materials Science and Engineering: An Integrated Approach. 2018.
57. Venables JA, Spiller G D T, Hanbucken M. Nucleation and growth of thin films. Reports on Progress in Physics, 1984. 47(4): p. 399-459.
58. Leung S N, Park C B, Xu D, Li H, Fenton R.G. Computer Simulation of Bubble-Growth Phenomena in Foaming. Industrial & Engineering Chemistry Research, 2006. 45(23): p. 7823-7831.
59. Amon M, Denson C.D. A study of the dynamics of foam growth: Analysis of the growth of closely spaced spherical bubbles. Polymer Engineering and Science, 1984. 24(13): p. 1026-1034.
60. Forest C, Chaumont P, Cassagnau P, Swoboda B, Sonntag P. Nanofoaming of PMMA using a batch CO2 process: Influence of the PMMA viscoelastic behaviour. Polymer, 2015. 77: p. 1-9.
61. Naguib H E, Park C B, Reichelt N. Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Journal of Applied Polymer Science, 2004. 91(4): p. 2661-2668.
62. Inoue T. Reaction-induced phase decomposition in polymer blends. Progress in Polymer Science, 1995. 20(1): p. 119-153.
63. Cahn J W. Phase Separation by Spinodal Decomposition in Isotropic Systems. The Journal of Chemical Physics, 1965. 42(1): p. 93-99.
64. Rundman K B, Hilliard J E. Early stages of spinodal decomposition in an aluminum-zinc alloy. Acta Metallurgica, 1967. 15(6): p. 1025-1033.
65. Hatanaka M, Saito H. In-Situ Investigation of Liquid−Liquid Phase Separation in Polycarbonate/Carbon Dioxide System. Macromolecules, 2004. 37(19): p. 7358-7363.
66. Chang Y I, Cheng W Y, Jang L. A novel method of making PVF porous foam without using the pore forming agent. Journal of Applied Polymer Science, 2015. 132(1): 41270
67. Liu M, Liu S, Xu Z, Wei Y, Yang H. Formation of microporous polymeric membranes via thermally induced phase separation: A review. Frontiers of Chemical Science and Engineering, 2016. 10(1): p. 57-75.
68. Guo H, Nicolae A, Kumar V. Solid-state poly(methyl methacrylate) (PMMA) nanofoams. Part II: Low-temperature solid-state process space using CO2 and the resulting morphologies. Polymer, 2015. 70: p. 231-241.
69. Polymeric Foams: Innovations in Processes, Technologies, and Products. Lee S.T., editor, Polymeric Foams Seris. 2016, CRC Press.
70. Ruiz J.A.R, Pedros M, Tallon J M, Dumon M. Micro and nano cellular amorphous polymers (PMMA, PS) in supercritical CO2 assisted by nanostructured CO2-philic block copolymers – One step foaming process. The Journal of Supercritical Fluids, 2011. 58(1): p. 168-176.
71. Hu J, Deng W. Application of supercritical carbon dioxide for leather processing. Journal of Cleaner Production, 2016. 113: p. 931-946.
72. Shieh Y T, Liu K H. Solubility of CO2 in glassy PMMA and PS over a wide pressure range: the effect of carbonyl groups. Journal of Polymer Research, 2002. 9(2): p. 107-113.
73. Nawaby A V, Handa Y P, Liao X, Yoshitaka Y, Tomohiro M. Polymer-CO2 systems exhibiting retrograde behavior and formation of nanofoams. Polymer International, 2007. 56(1): p. 67-73.
74. Guo H, and Kumar V. Solid-state poly(methyl methacrylate) (PMMA) nanofoams. Part I: Low-temperature CO2 sorption, diffusion, and the depression in PMMA glass transition. Polymer, 2015. 57: p. 157-163.
75. Crank J. The Mathematics of Diffusion 2nd edition, Oxford Science Publications, 1975.
76. Comyn, J. Introduction to Polymer Permeability and the Mathematics of Diffusion. 1985, p.1-10, Springer, Dordrecht
77. Pantoula M, Panayiotou C. Sorption and swelling in glassy polymer/carbon dioxide systems. The Journal of Supercritical Fluids, 2006. 37(2): p. 254-262.
78. Martini-Vvedensky J E, Suh N P, Waldman F A. Microcellular closed cell foams and their method of manufacture. US 4473665, 1984.
79. Pinto J, Reglero-Ruiz J.A, Dumon M, Rodriguez-Perez M.A. Temperature influence and CO2 transport in foaming processes of poly(methyl methacrylate)–block copolymer nanocellular and microcellular foams. The Journal of Supercritical Fluids, 2014. 94: p. 198-205.
80. Pinto J, Dumon M, Pedros M, Reglero J, Rodriguez-Perez M.A. Nanocellular CO2 foaming of PMMA assisted by block copolymer nanostructuration. Chemical Engineering Journal, 2014. 243: p. 428-435.
81. Costeux S, Zhu L. Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer, 2013. 54(11): p. 2785-2795.
82. Martini J E. The Production and Analysis of Microcellular Foam. MS Thesis Dept. of Mechanical Engineering, Massachusetts Institute of Technology, 1981.
83. Taki K. Experimental and numerical studies on the effects of pressure release rate on number density of bubbles and bubble growth in a polymeric foaming process. Chemical Engineering Science, 2008. 63(14): p. 3643-3653.
84. Standau T, Zhao C, Murillo Castellón S, Bonten C, Altstädt V. Chemical modification and foam processing of polylactide (PLA). Polymers, 2019. 11(2): p. 306.
85. Goel S K, Beckman E J. Nucleation and growth in microcellular materials: Supercritical CO2 as foaming agent. AIChE Journal, 1995. 41(2): p. 357-367.
86. Handa Y.P, Kruus P, O'Neill M. High-pressure calorimetric study of plasticization of poly(methyl methacrylate) by methane, ethylene, and carbon dioxide. Journal of Polymer Science Part B: Polymer Physics, 1996. 34(15): p. 2635-2639.
87. Goel S K, Beckman E J. Plasticization of poly(methyl methacrylate) (PMMA) networks by supercritical carbon dioxide. Polymer, 1993. 34(7): p. 1410-1417.
88. Wissinger R.G , Paulaitis M.E, Glass transitions in polymer / CO2 mixtures at
elevated pressures. Journal of Polymer Science Part B: Polymer Physics, 1991. 29(5): p. 631-633.
89. Condo P.D, Johnston K.P, Retrograde vitrification of polymers with compressed fluid diluents: experimental confirmation. Macromolecules, 1992. 25(24): p. 6730-6732.
90. Liu S, Duvigneau J, Vancso G.J. Nanocellular polymer foams as promising high-performance thermal insulation materials. European Polymer Journal, 2015. 65: p. 33-45.
91. Shafi M A, Joshi K, Flumerfelt R W. Bubble size distributions in freely expanded polymer foams. Chemical Engineering Science, 1997. 52(4): p. 635-644.
92. Zhao C, Qiao Y. Characterization of nanoporous structures: From three dimensions to two dimensions. Nanoscale, 2016. 8(40): p. 17658-17664.
93. Kumar V, Suh N.P. A Process for Making Microcellular Thermoplastic Parts. Polymer Engineering and Science, 1991. 30(20), 1323-1329.
94. Turgeon M L. Linne & Ringsrud's Clinical Laboratory Science The Basics and Routine Techniques. 6th edition, Mosby, 2011
95. Bergman T L, Incropera F P, Lavine A S, DeWitt D P. Introduction to Heat Transfer 6th Edition. 2011: John Wiley & Sons. p.46
96. Dutta B.K. Heat Transfer: Principles and Applications. 2000: PHI Learning. p.153
97. Rathore M M, Kapuno R. Engineering Heat Transfer 2nd edition. 2011: Jones & Bartlett Learning.p.687 ~ 692
98. Kant K, Shukla A, Sharma A, Biwole P.H. Heat transfer studies of photovoltaic panel coupled with phase change material. Solar Energy, 2016. 140: p. 151-161.
99. Liao K.H, Kobayashi S, Kim H, Abdala A, Macosko C. Influence of functionalized graphene sheets on modulus and glass transition of PMMA. Macromolecules, 2014. 47(21): p. 7674-7676.
100. Li S, Shen J, Tonelli A.E. The influence of a contaminant in commercial PMMA: A purification method for its removal and its consequences. Polymer, 2018. 135: p. 355-361.
101. Martín-de León J, Bernardo V, Rodríguez-Pérez M.Á. Key production parameters to obtain transparent nanocellular PMMA. Macromolecular Materials and Engineering, 2017. 302(12): p. 1700343
102. Martín-de León J, Bernardo V, Cimavilla‐Román P, Pérez-Tamarit S, Rodríguez-Pérez M. Overcoming the challenge of producing large and flat nanocellular polymers: a study with PMMA. Advanced Engineering Materials, 2019. 21(6): p. 1900148
103. Aher B, Olson N M, Kumar V. Production of bulk solid-state PEI nanofoams using supercritical CO2. Journal of Materials Research, 2013. 28(17): p. 2366-2373.
104. Price D M, Jarratt M. Thermal conductivity of PTFE and PTFE composites. Thermochimica Acta, 2002. 392-393: p. 231-236.
105. Notario B, Pinto J, Solorzano E, De Saja J A, Dumon M, Rodríguez-Pérez M.A. Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer, 2015. 56: p. 57-67.
106. Jenckel E, Heusch R. Die Erniedrigung der Einfriertemperatur organischer Gläser durch Lösungsmittel. Kolloid-Zeitschrift, 1953. 130(2): p. 89-105.
107. Gordon M, Taylor James S. Ideal copolymers and the second‐order transitions of synthetic rubbers. Non‐crystalline copolymers. Journal of Applied Chemistry, 1952. 2(9): p. 493-500.
108. Rodriguez-Parada J.M, Percec V. Interchain electron donor-acceptor complexes: a model to study polymer-polymer miscibility? Macromolecules, 1986. 19(1): p. 55-64.
109. Georges B, Prud'Homme Robert E. Miscibility of polycaprolactone/chlorinated polyethylene blends. Journal of Polymer Science: Polymer Physics Edition, 1982. 20(2): p. 191-203.
110. Souda R. Glass−Liquid Transition of Carbon Dioxide and Its Effect on Water Segregation. The Journal of Physical Chemistry B, 2006. 110(36): p. 17884-17888.
111. Pinto J, Pardo S, Solorzano E, Rodriguez-Perez M.A, Dumon M, De Saja J.A. Solid skin characterization of PMMA/MAM foams fabricated by gas dissolution foaming over a range of pressures, in Defect and Diffusion Forum. 2012. p. 434-439.
112. Liu K, Kiran E. Kinetics of pressure-induced phase separation (PIPS) in solutions of polydimethylsiloxane in supercritical carbon dioxide: crossover from nucleation and growth to spinodal decomposition mechanism. The Journal of Supercritical Fluids, 1999. 16(1): p. 59-79.
113. 廖宗恩, 以固態發泡法製備聚甲基丙烯酸甲酯奈米泡材,國立台北科技大學,化學工程所,碩士論文 2016.
114. Martín-de León J, Bernardo V, Rodríguez-Pérez M. Low density nanocellular polymers based on PMMA produced by gas dissolution foaming: Fabrication and cellular structure characterization. Polymers, 2016. 8(7): p. 265.
115. Moreno J.D. Radiative transfer and thermal performance levels in foam insulation boardstocks. MS Thesis Dept. of Architecture Massachusetts Institute of Technology, 1991.
116. Wang G, Zhao J, Mark L.H, Park C.B, Zhao G. Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties. European Polymer Journal, 2017. 95: p. 382-393.
117. Zhao D, Qian X, Gu X, Jajja S A, Yang R. Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials. Journal of Electronic Packaging, 2016. 138(4): p. 040802
118. Konstantinidou C, Göbel A, Kenisarina K, Hemberger F, Weinläder H, Mehling H. Development of measurement setup to determine the dynamic thermal behavior of building components with PCM. Conference: Eurotherm Seminar #99, Advances in Thermal Energy Storage, May 28th – 30th 2014, At Lleida (Spain).
119. Ye, C H, Zou X B, Shevchenko E, Li J. CO2 Batch foaming for fabricating semi-transparent PMMA nanofoam films. 16th International Conference on Advances Foam Materials and Technology, FOAMS 2018; Montreal, QC; Canada; 09/13/2018~09/14/2018.

無法下載圖示 全文公開日期 2024/11/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE