簡易檢索 / 詳目顯示

研究生: 林宛柔
Wan-Rou Lin
論文名稱: 使用回授陣列天線技術之雷達反射截面積增強結構
RCS Enhancing Structure Designs based on Van Atta Array
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 馬自莊
Tzyh-Ghuang Ma
王健仁
Chien-Jen Wang
廖文照
Wen-Jiao Liao
李宇旼
Yu-min Lee
何旻真
Min-Chen Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 72
中文關鍵詞: 范艾達天線貼片天線信號回授陣列天線雷達反射截面積車用雷達
外文關鍵詞: Van Atta, patch antenna, retro-directive antenna, radar cross section, car radar
相關次數: 點閱:313下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應雷達技術平價化與新興應用擴展的趨勢,本論文針對可改變雷達目標物反射特性的結構進行研究。考量在安全防護應用中,如車用防撞雷達,對反射能力較弱的目標,如行人和道路障礙物,設計增強RCS的結構,以提升偵測距離與系統反應時間。而RCS增強結構設計,基本設想是採取平面化構型,以方便附加於目標物上。除了提升在車用雷達頻段的RCS增強效能,也要增加其有效的入射角度範圍。
    本論文第一部份採用信號回授天線作設計,利用范艾達陣列天線能自動將入射的電磁波發射至來波方向特性,實現在目標頻段的RCS增強效能。第二部分提出一種改進式的單站雷達反射截面積量測方法,可在遠場無反射實驗室內進行,配合向量網路分析儀及相應的訊號處理方式,可計算出目標物之RCS值,並利用此方法量測一款於本研究中提出之RCS增強結構,探討其散射特性,經與模擬結果比較,驗證了該量測方法的準確性。本論文最後則是針對24 GHz車用雷達頻段進行RCS增強結構開發,提出兩款結合垂射與端射方向場型的貼片陣列天線,設計的兩款增強結構能對各角度的入射能提供強回波,達成寬角度的單站RCS增強效能。


    The reduced cost and development of innovative radar application motivate the research works presented in this thesis. The goal is to design broad angle radar cross section enhancing structures, which are applicable to the automotive anti-collision avoidance radar and help improve safety of low retro-directive targets such as the pedestrians and bicycles. By elevating the radar cross section levels of those targets, detection distances can be increased to save some time for the automobile control system. In order to install the radar cross section enhancing structure on targets conveniently, planar designs are preferred. Also, the reflection boosting feature is desired for a broad angular region to avoid potential blind spots.
    The first part of this thesis employs retro-directive antennas to achieve this goal. Owing to the distinctive property of Van Atta array, incident waves can be re-transmitted to the incoming direction without the uses of active components. Such a design is realized in the X-band.
    The second part presents a measurement technique that improves the sensitivity of RCS measurement, which is performed in a far-field antenna measurement range. The range setup as well as the instrument settings are optimized to assess low RCS levels.
    The last part designs a RCS enhancing structure in the 24 GHz band, which is applicable to automotive radar uses. Two types of patch antenna array are integrated to yield a broad angle RCS enhancing feature that meets the design goal of this work.

    摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅴ 圖目錄 Ⅶ 第一章 緒論 1 1.1 車用雷達的發展 1 1.2 雷達反射截面積RCS定義 1 1.3 道路上目標物的RCS增強需求 3 1.4 研究目標與貢獻 4 1.5 論文組織 4 第二章 用以增強RCS的回授陣列天線設計 5 2.1 前言 5 2.2 單元天線設計 8 2.2.1 陣列天線結構演進 10 2.2.2 相移補償傳輸線設計 12 2.3 4 × 1的范艾達陣列天線設計 14 2.4 4 × 4的范艾達陣列天線設計 18 2.5雙極化的4 × 1范艾達陣列天線設計 20 2.6 端射方向場型的單元貼片天線設計 22 2.7 端射方向場型的4 × 1范艾達貼片陣列天線設計 26 2.8 結合垂射方向與端射方向場型的范艾達陣列天線 28 2.9 小結 31 第三章 RCS量測技術發展與增強結構效能驗證 32 3.1 前言 32 3.2 量測系統 33 3.2.1 系統架構 33 3.2.2 訊號處理方法 34 3.2.3 量測驗證 35 3.3 降低背景雜訊干擾 37 3.4 RCS增強結構量測 40 3.5 小結 47 第四章 車用雷達頻段的低姿態寬角度RCS增強結構開發 48 4.1 前言 48 4.2 24 GHz車用雷達頻段RCS增強結構設計 49 4.2.1 陣列天線結構 49 4.2.2 相移補償傳輸線設計 54 4.3 垂射方向與端射方向場型的范艾達陣列天線設計 57 4.4結合兩種范艾達陣列之RCS增強結構設計 60 4.5 縱向結合之寬角度RCS增強結構設計 63 4.6 小結 68 第五章 結論 69 參考文獻 70

    [1] E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section. Artech House, Norwood, MA, 2004.
    [2] K. Geary, J. S. Colburn, A. Bekaryan, S. Zeng, B. Litkouhi, and M. Murad “Automotive radar target characterization from 22 to 29 GHz and 76 to 81 GHz,” 2013 IEEE Radar Conference, pp. 1-6, May 2013.
    [3] M. Cherniakov, D. Nezlin, and K. Kubik, “Air target detection via bistatic radar based on LEOS communication signals,” IEEE Proc.-Radar. Sonar Navig., vol 149, no. 1, pp. 33-38, Feb. 2002.
    [4] Wikipedia, Radar cross-section, [online]. Available: https://en.wikipedia.org/wiki/
    Radar_cross-section.
    [5] S. J. Chung, S. M. Chen, and Y. C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542-547, Feb. 2003.
    [6] Ahmed A. M. Ali, Heba B. El-Shaarawy, and Hervé Aubert, “Millimeter-wave substrate integrated waveguide passive Van Atta reflector array,” IEEE Trans. Antenna Propaga., vol. 61, no. 3, pp. 1465-1470, Mar. 2013.
    [7] Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antenna Propaga., vol. 60, no. 1, pp. 206-211, Jan. 2012.
    [8] J. A. Vitaz, A. M. Buerkle, and K. Sarabandi, “Tracking of metallic objects using retro-directive array at 26 GHz,” IEEE Trans. Antenna Propaga., vol. 58, no. 11, pp. 3539-3544, Nov. 2010.
    [9] Y.-J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2970-2976, Jul. 2006.
    [10] Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antennas Propaga., vol. 60, no. 1, pp. 206-211, Jan. 2012.
    [11] S. N. Hsieh and T. H. Chu, “Linear retro-directive array antenna using 90o hybrids,” IEEE Trans. Antenna Propaga., vol. 56, no. 6, pp. 1573-1580, Jun. 2008.
    [12] T. Brabetz, V.F. Fusco, and S. Karode, “Balanced subharmonic mixers for retrodirective-array applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 3, pp. 465-469, Mar. 2001.
    [13] R. Y. Miyamoto, Y. Qian, and T. Itoh, “An active integrated retrodirective transponder for remote information retrieval-on-demand,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 9, pp. 1658-1662, Sep. 2001.
    [14] R. Y. Miyamoto and T. Itoh, “Retrodirective arrays for wireless communications,” IEEE Microw. Mag., vol. 3, pp. 71-79, Mar. 2002.
    [15] S. C. Yen and T. H. Chu, “A Retro-directive array antenna with phase conjugation circuit using sub-harmonically injection-locked self-oscillating mixers,” IEEE Trans. Antennas Propaga., vol. 52, no. 1, pp. 154-164, Jan. 2004.
    [16] L. Chiu, Q. Xue, and C. H. Chan, “Phase-conjugated arrays using low conversion-loss resistive phase-conjugating mixers and stub-loaded patch antennas,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1764-1773, Aug. 2008.
    [17] H. Matsumoto, “Research on solar power satellites and microwave power transmission in Japan,” IEEE Microw. Mag., vol. 3, no. 4, pp. 36-45, Dec. 2002.
    [18] M. Cohn, “A millimeter wave retrodirective transponder for collision/obstacle avoidance and navigation/location,” in Proc. IEEE-IEE Vehicle Navigation Information Systems Conf., Ottawa, ON, Canada, pp. 534-538, Oct. 1993.
    [19] P. Chen, W. Hong, Z. Kuai, and J. Xu, “A double layer substrate integrated waveguide blass matrix for beamforming applications,” IEEE Trans Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 374-376, Jun. 2009.
    [20] C. G. Backman, “Some recent developments in RCS measurements techniques,” Proc. IEEE, vol. 53, no. 8, pp. 962-972, Aug. 1965.
    [21] L. Zhang, K. Ding, N. Li, and J. Ren, “High-resolution RCS measurement inside an anechoic chamber,” in Proc. IEEE International Forum on Information Technology and Applications(IFITA), pp. 252-255, Jul. 2010.
    [22] J. Garat, “Microwave techniques for radar cross section measurements:a review”, 8th Meditarranean , MELECON, 1996.
    [23] IEEE, IEEE recommended practice for radar cross-section test procedures(Std 1502-2007), Standard, 2007.
    [24] L. Sevgi, Z. Rafiq, and I. Majid, “Radar cross section (RCS) measurements,” IEEE Antennas Propagation Magazine, vol. 55, no. 6, pp. 278-291, Dec. 2013.
    [25] 蔡晉哲, 波束可重置天線陣列設計與雷達反射截面積增強結構開發, 國立臺灣科技大學電機工程研究所, 碩士論文, 民國105年
    [26] L. Peters, “Passive bistatic radar enhancement devices,” IEE Proceedings, vol. 109, Part C, no. 15, pp. 1-10, Jul. 1961.
    [27] K. Sarabandi and T. -C. Chiu, “Optimum corner reflectors for calibration of imaging radars,” IEEE Trans. Antennas Propag., vol. 44, no. 10, pp. 1348-1631, Oct. 1996.
    [28] T. Griesser and C. A. Balanis, “Backscatter analysis of dihedral corner reflectors using physical optics and physical theory of diffraction,” IEEE Trans. Antennas Propagat., vol. AP-35, no. 10, pp. 1137-1147, Oct. 1987.
    [29] D. Lipuma, S. Meric, and R. Gillard, “RCS enhancement of flattened dihedral corner reflector using reflectarray approach,” Electron. Lett., vol. 49, no. 2, pp. 152-153, Jan. 2013.

    QR CODE