簡易檢索 / 詳目顯示

研究生: 林智鵬
Chih-Peng Lin
論文名稱: 使用品質服務排程設計多媒體串流通訊實現在無線寬頻網路系統
Practical Design of Multimedia Streaming Transmission Under WiMAX Systems Using QoS scheduling
指導教授: 陳省隆
Hsing-Lung Chen
口試委員: 楊竹星
Chu-Sing Yang
呂政修
Jenq-Shiou Leu
鄭瑞光
Ray-Guang Cheng
石維寬
Wei-Kuan Shih
莊博任
Po-jen Chuang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 87
中文關鍵詞: 無線寬頻網路(WiMAX)可變動位元率控制(VBR)串流應用NS-2寬頻無線即時多媒體網路即時輪詢品質服務延伸即時輪詢品質服務受約用戶端max-min fairness queue 排程演算IPTV
外文關鍵詞: WiMAX, VBR, Streaming Application, NS-2, wireless broadband real-time multimedia network, real-time polling service, extend real-time polling service, subscribe station, max-min fairness scheduling algorithm, IPTV
相關次數: 點閱:298下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由可變動位元率控制(VBR)之特性如何有效率作傳遞服務在寬頻無線即時多媒體網路,在此資料率(data rate)控制機制是提供上行競爭頻道一個即時輪詢品質服務,同時系統設定固定傳送交通率參數作封包遞送服務,也意謂本文利用在無線寬頻網路之MAC層上採取傳送訊框服務機制,考慮佇列排程演算法予以分配頻寬資源。換言之,研究目的解決受約用戶端下競爭資源不均的頻寬且同時改善時間延遲抖動率大的問題,我們以無線寬頻網路MAC layer所提供之規律間隔時間輪詢服務品質方式去傳送多媒體串流。本研究植基於在競爭輪詢行動用戶端情況下,提出即時輪詢服務品質之排程演算法,其目的是要解決競爭用戶端頻寬分配不均問題。這研究提到頻寬分配法則是採用Max-Min fairness queue 排程演算,這主要是因為要在無線寬頻網路環境下,以有限即時時間方式傳送多媒體可變位元率串流,且讓base station 能夠有效管理頻寬資源,這論文首先貢獻是比較所提extension 即時輪詢品質服務之max-min fairness queue排程演算法,在其傳遞可變動多媒體串流時會有較好服務品質比一般所提即時排程演算法則。
    其次本論文另一貢獻是實際以 VIDEO串流在下行(downlink) base station端作品質服務之效能評估,我們將行動用戶端之串流給予End-to-End 方式導入IPTV軟體平臺架構,在無線寬頻網路下有效傳送IPTV 串流;再者本研究實驗方式將導入NS-2作網路模擬。藉此可以評估base station是否能有效控管無線多媒體影音網路其傳遞串流之狀況,如此改善IPTV串流品質。其次這研究實驗工具來源是參考及改善NIST協會機構所提出NS-2 軟體之WiMAX模擬元件模組,我們採用實際網路IPTV 軟體作整合設計,同時分析比較不同IPTV 串流(諸如PPstreaming 及CBR)其品質服務之優缺點, 這目的是可以透過實際IPTV串流模擬觀察給予串流作彈性速率調整,如此無線寬頻網路傳遞多媒體IPTV串流時;對於服務品質量測包括傳遞串流之產能效益、行動用戶端競爭資源下之封包遺失率、不同無線子載波頻道分配技術下訊框傳遞效益優劣…等能有效管理評估,我們實驗結果表現出在無線環境頻道基於MAC Layer品質服務管理下,運用IPTV 串流所傳遞的訊框,在分析不同調變資料率和多重之行動節點負載率狀態時,PPStreaming能達到較好效能比CBR 所傳遞IPTV 串流方式,我們觀察能促使有效評估影音品質和Coding rate。


    This thesis investigates variable rate control strategies for
    real-time multimedia variable bit rate (VBR) services over IEEE
    802.16 broadband wireless networks. A data rate control mechanism is
    derived for the case where the uplink channel provides real time
    services and the traffic rate parameter remains constant. This study
    shows that the common queuing scheduling algorithms have some
    bandwidth allocation fairness problems for real-time polling
    services (rtPS) in the MAC layer. In other words, the use of a VBR
    for rtPS by a worldwide interoperability for microwave access
    (WiMAX) system results in additional access latency jitter and
    bandwidth allocation disorder in the transmitted multimedia streams
    during the regular time interval polling of subscribe stations (SSs)
    for the contention bandwidth request period. However, the proposed
    scheduling algorithm solves these SSs contending with bandwidth
    resource allocation problems based on an extended real-time polling
    service (ertPS) of quality of service pre-programming for a ranging
    response non-contention polling period. The adopted bandwidth
    allocation of max-min fairness Queue scheduling uses a time
    constraint condition to transmit real-time multimedia VBR streaming
    in an IEEE 802.16 broadband wireless environment. Our first
    contribution is to compare the capacity of multimedia VBR stream and
    show that the proposed ertPS scheduling algorithm outperforms other
    rtPS scheduling algorithms.

    Our second contribution is present a novel and complete toolset to
    evaluate the delivery quality of video streaming transmissions in a
    simulated wireless broadband network. Internet Protocol-based
    Television (IPTV) is a digital television service which delivers
    television content via an IP network. The rapid growth of wireless
    network technology in recent years has changed, the way people
    access the Internet. Adding mobility to IPTV can create a truly
    compelling ubiquitous service which spans different network domains
    and varied IP-enabled terminals and devices, such as set-top boxes,
    PCs and cell phones. However, extending IPTV service to wireless
    networks requires overcoming bandwidth bottlenecks and high packet
    loss rates. Following the IEEE 802.16 standard, WiMAX features high
    data rates and large service coverage, offering a wireless broadband
    solution for IPTV services. While previous research has focused on
    creating a broadband IPTV service few studies have practically
    evaluated IPTV applications in a wireless broadband network
    environment. In this thesis, we model and evaluate a common constant
    bit rate (CBR) based IPTV application
    and an IPTV live streaming (PPStreaming) application
    while retrieving IPTV content via a WiMAX network. We also use the
    NS2 simulation tool to evaluate the performance of these two IPTV
    applications. The evaluation metrics include latency, packet loss,
    data rate and throughput statistics when the two IPTV applications
    are run in the WiMAX network.

    目錄 教授推薦書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 論文口試委員審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Related Research about Uplink QoS Scheduling on WiMAX . . . . . . . 5 2.2 Related Research about Downlink QoS Scheduling on WiMAX . . . . . 6 3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Supporting Uplink of VBR Frame Traffic System Model . . . . . . . . . 8 3.2 Integration Technology of P2P IPTV Streaming . . . . . . . . . . . . . . 12 3.2.1 The Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.2 Medium Access Control (MAC) Layer . . . . . . . . . . . . . . 14 3.2.3 Downlink QoS scheduling for IPTV Applications on MAC . . . . 16 3.2.4 IPTV Implementation over WiMAX . . . . . . . . . . . . . . . 17 4 P2P IPTV Streaming Transmission Methodology . . . . . . . . . . . . . . . . 19 4.1 Statistical Traffic for PPStreaming IPTV . . . . . . . . . . . . . . . . . . 19 4.1.1 Schedule Scheme of Lognormal Algorithm . . . . . . . . . . . . 21 4.1.2 Downlink Schedule Scheme of IPTV Agent . . . . . . . . . . . 23 4.2 Bandwidth Resource Allocation Rule in WiMAX . . . . . . . . . . . . . 25 4.2.1 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . 25 4.2.2 Capacity Scaling with Large U in Non-Symmetric Network . . . 29 4.2.3 Extreme Values of Heavy-tail Random Variables . . . . . . . . . 31 4.2.4 The Measurement of IPTV Heavy-tail Random Variable Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 QoS Uplink Scheduling Algorithm on WiMAX . . . . . . . . . . . . . . . . . 34 5.1 Proposed Algorithm for Real-Time VBR Streaming . . . . . . . . . . . . 34 5.2 Max-Min Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3 Max-Min Fairness and Proportional Fairness . . . . . . . . . . . . . . . . 38 5.4 Bottlenecked and Active Flows . . . . . . . . . . . . . . . . . . . . . . . 43 6 Simulation Model and Results Analysis . . . . . . . . . . . . . . . . . . . . . 46 6.1 Performance of ertPS Uplink Scheduling Evaluation for VBR Streaming Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.2 Simulation Model for P2P IPTV Streaming Transmission . . . . . . . . 53 7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 附錄一: OCTAVE 程式列表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 授權書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    [1] Chih-Peng Lin, Hsing-Lung Chen, and Jenq-Shiou Leu. Modeling and Evaluating
    IPTV Applications in WiMAX Networks. Multimedia Tools and Applications
    (MTAP), April 2012. On-Line.
    [2] Draft Standard for Local and metropolitan area networks Part 16: Air Interface for
    Broadband Wireless Access Systems (Revision of IEEE Std 802.16-2004 and consolidates
    material from IEEE Std 802.16e-2005, IEEE Std 802.16-2004/Cor1-2005,
    IEEE Std 802.16f-2005 and IEEE Std 802.16g-2007). In IEEE Unapproved Draft
    Std P802.16Rev2/D3 Feb 2008, 2008.
    [3] Jamil Khan German Castellanos. Performance of WiMAX packet schedulers for
    multi-class traffic. In LATINCOM 2010 — 2010 IEEE Latin-American Conference
    on Communications, pages 1–6, Bogota, Colombia, 2010.
    [4] Chih-Peng Lin, Jenhui Chen, and Hsing-Lung Chen. An efficient bandwidth allocation
    algorithm for real-time VBR stream transmission under IEEE 802.16 wireless
    networks. Journal of Network and Computer Applications, 33(4):467–476, 2010.
    [5] Giovanni Berlanda Scorza, Claudio Sacchi, and Fabrizio Granelli. An adaptive
    MAC-PHY approach for medium access control in VBR MC-CDMA systems. In
    MSAN05 — 2005 1st International Conference on Multimedia Services Access
    Networks, volume 2005, pages 96–100, Orlando, FL, United states, 2005.
    [6] Pietro Camarda and Domenico Striccoli. Queueing networks approach for bandwidth
    estimation of smoothed VBR video streams. Performance Evaluation,
    57(1):1–18, 2004.
    [7] Aymen Belghith and Loutfi Nuaymi. Comparison of WiMAX scheduling algorithms
    and proposals for the rtPS QoS class. In EW2008 — 14th European Wireless
    Conference 2008, Electronic Proceedings, pages 1–6, Prague, Czech republic, 2008.
    [8] Seungwan, Byunghan Ryu, Hyunhwa Seo, and Mooyong Shin. Urgency and efficiency
    based packet scheduling algorithm for OFDMA wireless system. In IEEE International Conference on Communications, volume 4, pages 2779 – 2785, Seoul,
    Korea, Republic of, 2005.
    [9] Eun-Chan Park, Hwangnam Kim, Jae-Young Kim, and Han-Seok Kim. Dynamic
    bandwidth request-allocation algorithm for real-time services in IEEE 802.16 broadband
    wireless access networks. In Proceedings — IEEE INFOCOM, pages 1526–
    1534, Phoenix, AZ, United states, 2008.
    [10] Kunwadee Sripanidkulchai, Bruce Maggs, and Hui Zhang. An analysis of live
    streaming workloads on the Internet. In IMC 2004 — Proceedings of the 2004
    ACM SIGCOMM Internet Measurement Conference, pages 41–54, Taormina, Italy,
    2004.
    [11] Thomas Silverston and Olivier Fourmaux. Measuring P2P IPTV Systems. In NOSSDAV’
    07 — Proceedings of Network and Operating Systems Support for Digital
    Audio & Video, pages 83–88, Urbana IL, USA, 2007.
    [12] Wen-Hsing Kuo, Wanjiun Liao, and Tehuang Liu. Adaptive resource allocation for
    layer-encoded IPTV multicasting in IEEE 802.16 WiMAX wireless networks. IEEE
    Transactions on Multimedia, 13(1):116–124, 2011.
    [13] Chuan Wu, Baochun Li, and Shuqiao Zhao. Exploring large-scale peer-to-peer live
    streaming topologies. ACM Transactions on Multimedia Computing, Communications
    and Applications (TOMCCAP), 4(3), 2008.
    [14] Pin-Chuan Liu, Jenq-Shiou Leu, Tsung-Chieh Lee, Tien-Ho Chen, Yun-Sun Yee,
    and Wei-Kuan Shih. WuKong: a practical video streaming service based on native
    BitTorrent and scalable video coding. Multimedia Tools and Applications (MTAP),
    pages 1–22, 2011.
    [15] Kamran Etemad and Limei Wang. Multicast and broadcast multimedia services in
    mobile WiMAX networks. 47(10):84–91, 2009.
    [16] WiMAX Forum. WiMAX Forum. In Available:http://www.wimaxforum.org.
    [17] Francis E. Retnasothie, M. Kemal ÄO zdemir, Tevfik YÄucek, Hasari Celebi, Joseph
    Zhang, and Ranesh Muththaiah. Wireless IPTV over WiMAX: Challenges and Applications. In WAMICON 2006 — IEEE Wireless and Microwave Technology Conference,
    pages 1–5, Clearwater Beach, FL, United states, 2006.
    [18] Mostafa Zaman Chowdhury, Bui Minh Trung, Yeong Min Jang, Young-Il Kim, and
    Won Ryu. Service Level Agreement for the QoS Guaranteed Mobile IPTV Services
    over Mobile WiMAX Networks. The Journal of Korea Information and Communications
    Society (KICS), 36(4):1–6, 2011.
    [19] Sara Pizzi, Antonella Molinaro, and Antonio lera. Channel-aware class-based
    scheduling for QoS support in IEEE 802.16/WiMAX networks. In ICOIN 2009
    — 2009 International Conference on Information Networking, pages 1–5, Chiang
    Mai, Thailand, 2009.
    [20] Aman Muhammad, Sikdar Biplab, and Parekh Shyam. Scalable Peer-to-Peer Video
    Streaming in WiMAX Networks. In GLOBECOM — IEEE Global Telecommunications
    Conference, pages 1–6, Honolulu, HI, United states, 2009.
    [21] Eun-Chan Park, Hwangnam Kim, Jae-Young Kim, and Han-Seok Kim. Dynamic
    bandwidth request-allocation algorithm for real-time services in IEEE 802.16 broadband
    wireless access networks. In Proceedings — IEEE INFOCOM, pages 1526
    – 1534, Phoenix, AZ, United states, 2008. IEEE Communications Society.
    [22] Qingwen Liu, Xin Wang, and Georgios B. Giannakis. A cross-layer scheduling
    algorithm with QoS support in wireless networks. IEEE Transactions on Vehicular
    Technology, 55(3):839–847, 2006.
    [23] Ricardo Matos, Pedro Neves, and Susana Sargento. Evaluating WiMAX QoS performance
    in a real testbed. In Conftele — The 7th Conference on Telecommunications,
    Santa Maria da Feira, (Portugal), 2009. Universidade de Aveiro, Campo
    Universitario.
    [24] Tolga Bektas, Osman Oguz, and Iradj Ouveysi. Designing cost-effective content distribution
    networks. Computers and Operations Research, 34(8):2436–2449, 2007.
    [25] BEYLOT Andrѐ-Luc. Models De traffic et commutateurs pour l’evaluation de la
    perte et du delai dans les reseaux ATM. these de doctorat de l’Universite Paris 6., 1993.
    [26] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak-Shing Peter Yum. CoolStreaming/-
    DONet: A data-driven overlay network for peer-to-peer live media streaming. In
    Proceedings — IEEE INFOCOM, volume 3, pages 2102–2111, Miami, FL, United
    states, 2005.
    [27] SopCast. SopCast. In Available: http://www.sopcast.com.
    [28] PPLive. PPLive [Online]. In Available: http://www.pplive.com.
    [29] Hrishikesh Deshpande, Mayank Bawa, and Hector Garcia-Molina. Streaming Live
    Media over a Peer-to-Peer Network. Technical Report 2001-30, Stanford University
    InfoLab, (USA), 2001.
    [30] PPStream. PPStream [Online]. In Available: http://www.ppstream.com.
    [31] Will Hrudey and Ljiljana Trajkovc. Mobile WiMAX MAC and PHY layer optimization
    for IPTV. Mathematical and Computer Modelling, 53(3):2119–2135, 2011.
    [32] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks.
    In IMC — Proceedings the ACM SIGCOMM Internet Measurement Conference,
    pages 189–202, Rio de Janeriro, Brazil, 2006.
    [33] Ihsan Ullah, Guillaume Doyen, Rida Khatoun, and Dominique Gaiti. A Decentralized
    Approach to Make Application Layer Multicast Systems Dynamics-aware. In
    JDIR’09 — 10µemes Journµees Doctorales en Informatique et Rµeseaux, pages 43–
    48, µa l’Universitµe de Technologie de Belfort-Montbµeliard, 2009.
    [34] Vishal Sharma and Namita Vamaney. The Uniformly-Fair Deficit Round-Robin
    (UF-DRR) scheduler for improved QoS guarantees in IEEE 802.16 WiMax networks.
    In MILCOM — IEEE Military Communications Conference, volume 29-
    31, pages 1–7, Orlando, FL, United states, 2007.
    [35] WiMAX Forum. Mobile System Profile Specification Common Part. In WiMAX
    Forum Air Interface Specifications, WMF-T23-001-R015v02. WiMAX Forum Proprietary,
    July 2011.
    [36] Andrea Goldsmith. Cambridge Univ Press, UK, 2005.
    [37] Sergio Verdú. Cambridge University Press, UK, 2011.
    [38] Jens Zander. Distributed cochannel interference control in cellular radio systems.
    IEEE Transactions on Vehicular Technology, 41(3):305–311, 1992.
    [39] Roy D. Yates. A framework for uplink power control in cellular radio systems.
    Selected Areas in Communications, IEEE Journal on, 13(7):1341 –1347, sep 1995.
    [40] Leo Breiman. On some limit theorems similar to the arc-sin law. In Theory Probab.
    Appl., volume 10, pages 323–331, 1965.
    [41] Rajendra K. Jain, Dah-MingW. Chiu, andWilliam R. Hawe. A quantitative measure
    of fairness and discrimination for resource allocation in shared computer systems.
    DEC Research Report TR-301, 1984.
    [42] Vijay Bulusu, Arjan Durresi, Vamsi Paruchuri, and Mimoza Durresi. Key Distribution
    in Mobile Heterogeneous Sensor Network. In GLOBECOM — IEEE
    Global Telecommunications Conference, pages 1–5, San Francisco, CA, United
    states, 2006.
    [43] John Rawls. A Theory of Justice. Belknap Press, 1971.
    [44] Dimitri P. Bertsekas and Robert G. Gallager. Data Networks. Prentice Hall, 1987.
    [45] Ellen L. Hahne. Round-robin scheduling for max-min fairness in data networks.
    IEEE Journal on Selected Areas in Communications, 9(7):1024–1039, 1991.
    [46] Frank P. Kelly. Charging and rate control for elastic traffic. European Transactions
    on Telecommunications, 8(1):33–37, 1997.
    [47] Frank P. Kelly, Aman Maulloo, and David Tan. Rate control in communication networks:
    shadow prices, proportional fairness and stability. Journal of the Operational
    Research Society, 49(3):237–252, 1998.
    [48] Leandros Tassiulas and Saswati Sarkar. Maxmin fair scheduling in wireless networks.
    volume 2, pages 763–772, New York, NY, United states, 2002.
    [49] Bozidar Radunovic and Jean yves Le Boudec. Why Max-min Fairness Is Not Suitable
    For Multi-Hop Wireless Networks. Document, Ecole Polytechnique F´ed´erale
    de Lausanne (EPFL), pages 33–37, 2003.
    [50] Ji Yang, Zhang Yifan, Wang Ying, and Zhang Ping. Average rate updating mechanism
    in proportional fair scheduler for hdr. volume 6, pages 364–366, Dallas, TX,
    United states, 2004.
    [51] Peter Marbach. Priority service and max-min fairness. IEEE/ACM Transactions on Networking, 11(5):733 – 746, 2003.

    無法下載圖示 全文公開日期 2013/04/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2014/04/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE