簡易檢索 / 詳目顯示

研究生: 黃昱翔
Yu-Xiang Huang
論文名稱: 取栓支架雷射切割後製程的改善與探討
Improvement and Discussion of Post Laser Cutting Process for Stent Retriever Fabrication
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 林建宏
Chien-Hung Lin
鍾俊輝
Chun-hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 111
中文關鍵詞: 取栓支架旋轉漿體研磨脈衝電解拋光圓角化
外文關鍵詞: stent retriever, rotary slurry grinding, pulse electropolishing, edge rounding
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

取栓支架屬於魚簍型金屬支架,主要用於治療血管阻塞所造成的缺血性腦中風,其方法為使用金屬支架將堵住動脈之血塊取至引導導管,再隨引導導管取出體外。常用的材料為具有良好生物相容性的鎳鈦合金。
此篇論文研究主要目的為改良支架後製程中的噴砂研磨及電解拋光兩部分,實驗方法為以取栓支架的結構設計為實驗試片的模型,以光纖雷射切割金屬管而成後,再探討其後處理製程並改善優化。首先是為改良金屬支架在傳統機械噴砂上的問題,面對機械噴砂常因手持式的工法導致支架移除不均勻的結果,希望透過新開發的旋轉漿體研磨作為主要改善問題的方法。此方法利用直流馬達作為主要動力源,將支架固定於特製治具並浸入於漿體進行旋轉研磨,觀察在不同砂材粒徑底下,支架模型隨著工作時間增加後的表面形貌變化及融渣移除情況。最後是探討不同電解拋光加工時間及電源輸出形式對於邊緣圓角化的影響。實驗藉由不同電解拋光時間,觀察材料移除量提高後邊緣圓角的變化,另外使用脈衝直流電源供應器比較與一般直流電源供應器之間的差異,觀察其於電解拋光製程上帶來的影響。
實驗結果指出先使用粗粒徑(87.5~73.5μm)再用中粒徑(62~52.5μm)磨料研磨可以完全移除雷射切割後所產生的融渣,且得到較佳的表面形貌品質。在電解拋光的探討中,證實使用脈衝電解拋光能夠改善一般直流電解拋光為達到支架邊緣圓角化而必須提高材料移除量的缺點,而達到相近的圓角值可以省去近3%的材料移除量。
關鍵字:取栓支架、旋轉漿體研磨、脈衝電解拋光、圓角化


The stent retriever is a fish basket type metal stent and mainly used for dealing with ischemic cerebral stroke caused by blood vessel obstruction. The stent can grasp the blood clot that blocks the artery to the catheter, then the clot is taken out of the body with the catheter. The main commonly used material is Nitinol, due to its shape memory property and good biocompatibility.
The main purpose of this thesis is to improve two parts of the post laser cutting process in stent fabrication: sandblasting and electropolishing. The first is to improve the shortcoming of conventional mechanical sandblasting, which often results non-uniform stent material removal due to its hand-held method. Therefore, the newly developed rotary slurry grinding method was performed in this study. In the method, stents were fixed on a special fixture and immersed in the slurry to perform rotary grinding with a controllable DC motor. The surface morphology and slag removal of the stent model were investigated with increasing working time under different particle sizes. Finally, the effect of process time and power source type of electropolishing process on edge rounding was studied. Experiments were carried out by varying time of electropolishing work to observe the relationship between the material removal amount and the change of edge rounding. In addition, a pulsed DC power supply was used, compared with a DC power supply, to study its effect on the material removal rate and edge rounding performance in the stent electropolishing process.
The experimental results indicate that the rotary slurry grinding with the coarse abrasives (size 87.5~73.5μm) firstly and the medium abrasives (size 62~52.5μm) secondly can completely remove the slag generated by laser cutting, and obtain better surface topography quality. In the study of edge rounding, it is observed that the increase in the material removal can improve edge rounding. The study of pulse electropolishing has proved that it can improve the drawback of conventional DC electropolishing, to achieve edge rounding and sacrifice the material usage. The similar edge rounding value can be achieved with pulse electropolishing process and the material removal amount is about 3% less.
Keyword: stent retriever, rotary slurry grinding, pulse electropolishing, edge rounding

摘要 Abstract 目錄 圖目錄 表目錄 第1章 、緒論 1.1 前言 1.2 研究動機 1.3 研究目的 第2章 、文獻回顧 2.1 材料性質 2.2 流體研磨原理及特性 2.2.1 流體研磨文獻回顧 2.3 噴砂原理及特性 2.3.1 噴砂方式 2.3.2 砂材種類 2.3.3 噴砂技術文獻回顧 2.4 酸洗原理及特性 2.4.1 酸洗技術文獻回顧 2.5 電解拋光原理及特性 2.5.1 電解拋光亮化作用 2.5.2 電解拋光I-V曲線圖 2.5.3 電解拋光文獻回顧 2.6 脈衝電源介紹分析 2.6.1 脈衝電源文獻回顧 第3章 、研究方法 3.1實驗設計及參數設定 3.1.1 試片材料介紹與設計 3.1.2 旋轉漿體研磨 3.1.3 酸洗蝕刻 3.1.4 直流及脈衝直流電解拋光 3.1.5 實驗結果分析 3.2 實驗設備介紹 3.2.1 試片製作 3.2.2 乾式噴砂及旋轉漿體研磨 3.2.3 酸洗蝕刻 3.2.4 電解拋光 3.2.5 實驗結果分析設備 第4章 、實驗結果 4.1 旋轉漿體研磨實驗 4.1.1 磨料粒徑對於材料移除量之影響 4.1.2 磨料粒徑與研磨時間對於研磨後品質之影響 4.1.3 複合研磨對於研磨之影響 4.2 酸洗蝕刻實驗 4.2.1 酸洗時間對於304不鏽鋼之影響 4.2.2 酸洗304不鏽鋼圓管 4.2.3 酸洗304不鏽鋼支架模型 4.3 電解拋光實驗 4.3.1 電壓值對於電解拋光後表面形貌之影響 4.3.2 電解拋光工作時間對於拋光後圓角化之影響 4.3.3 旋轉漿體研磨與噴砂之電解拋光結果比較 4.3.5 實際取栓支架結構之電解拋光 4.4脈衝直流電解拋光實驗 4.4.1 脈衝寬度對於拋光後邊緣圓角之影響 第5章 、結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

[1] 崔祐堃,「急性缺血性腦中風動脈內取栓治療-簡介、現況、與展望」,腦中風會訊,23卷3期,頁11-14,2016。
[2] D. Yang; Y. Hao; W. Zi; H. Wang; D. Zheng; H. Li; M. Tu; Y. Wan; P. Jin; G. Xiao; Y. Xiong; G. Xu; X. Liu. “Effect of retrievable stent size on endovascular treatment of acute ischemic stroke: a multicenter study”, American Journal of Neuroradiology, 38(8), pp.1586-1593, 2017.
[3] 施俊哲,「血管支架簡介」,財團法人台灣動脈關懷協會,2008。
[4] 劉紫煒,「生醫鎳鈦支架後處理方法之研究」,碩士論文,國立臺灣科技大學機械工程研究所,2014。
[5] T. Wu; X. Chen; D. Fan; X. Pang. “Development and application of metal materials in terms of vascular stents”, Bio-medical Materials and Engineering, 25(4), pp.435-441, 2015.
[6] Y. H. Zhou; J. H. Liao; H. Y. Meng; C. C. Zeng; S. H. Liu. “The technological progress of endovascular stents [J]”, Journal of South China Normal University (Natural Science), 2(023), 2005.
[7] K. Gov; O. Eyercioglu. “Effects of abrasive types on the surface integrity of abrasive-flow-machined surfaces”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(6), pp.1044-1053, 2018.
[8] 張宗達,「磨料流動加工對微細流道精修表面研究」,碩士論文,國立中央大學機械工程研究所,2005。
[9] S. S. Kumar; S. S. Hiremath. “A review on abrasive flow machining (AFM)”, Procedia Technology, 25, pp.1297-1304, 2016.
[10] M. R. Sankar; V. K. Jain; J. Ramkumar. “Abrasive flow machining (AFM): an overview”, Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India, pp.1-8, 2011.
[11] T. R. Loveless; R. E. Williams; K. P. Rajurkar. “A study of the effects of abrasive-flow finishing on various machined surfaces”, Journal of Materials Processing Technology, 47(1-2), pp.133-151, 1994.
[12] V. Jain; S. G. Adsul. “Experimental investigations into abrasive flow machining (AFM)”, International Journal of Machine Tools and Manufacture, 40(7), pp.1003-1021, 2000.
[13] M. Wakuda; Y. Yamauchi; S. Kanzaki. “Material response to particle impact during abrasive jet machining of alumina ceramics”, Journal of Materials Processing Technology, 132(1-3), pp.177-183, 2003.
[14] 曾暐凱,「生醫支架雷射加工後處理製程改良」,碩士論文,國立臺灣科技大學機械工程研究所,2017。
[15] U. Gbureck; A. Masten; J. Probst; R. Thull. “Tribochemical structuring and coating of implant metal surfaces with titanium oxide and hydroxyapatite layers”, Materials Science and Engineering: C, 23(3), pp.461-465, 2003.
[16] C. Y. Zheng; F. L. Nie; Y. F. Zheng; Y. Cheng; S. C. Wei; R. Z. Valiev. “Enhanced in vitro biocompatibility of ultrafine-grained biomedical niti alloy with microporous surface”, Applied Surface Science, 257(21), pp.9086-9093, 2011.
[17] F. Keady; B. P. Murphy. “Investigating the feasibility of using a grit blasting process to coat nitinol stents with hydroxyapatite”, Journal of Materials Science: Materials in Medicine, 24(1), pp.97-103, 2013.
[18] A. Tamba; N. Azzerri. “Anodic pickling of stainless steels in sulphuric acid”, Journal of Applied Electrochemistry, 2(3), pp.175-181, 1972.
[19] B. Katona; E. Bognar; B. Berta; P. Nagy; K. Hirschberg. “Chemical etching of nitinol stents”, Acta of Bioengineering and Biomechanics, 15(4), 2013.
[20] 賴建璋,「不鏽鋼表面電解拋光技術研究」,碩士論文,元智大學機械工程研究所,2002。
[21] R. Steegmueller; T. Fleckenstein; A. Schuessler. “Is electropolishing equal electropolishing? a comparison study for nitinol stents”, In Medical Device Materials III Proceedings of the Materials & Processes for Medical Devices Conference, pp.163-168, 2005.
[22] S. –J. Lee; Y. –H. Chen; J. –C. Hung. “The investigation of surface morphology forming mechanisms in electropolishing process”, International Journal of Electrochemical Science, 7, pp.12495-12506, 2012.
[23] 陳裕豐,「高潔淨閥件之流道表面處理-電解拋光(EP)技術」,機械工業雜誌,198期,頁230-240,1999。
[24] 謝格列夫,「金屬的電拋光和化學拋光」,科學出版社,1961。
[25] C. L. Faus. “Electropolishing ΙΠ:The practical side. Metal finishing”, pp.21-25, 1982.
[26] C. L. Faus. “Electropolishing Π:The practical side. Metal finishing”, pp.59-63, 1982.
[27] S. Murali; M. Ramachandra; K. S. S. Murthy; K. S. Raman. “Development of electropolishing tecniques on metals and alloys”, Praktische Metallographie, 33(7), pp.359-368, 1996.
[28] T. Hryniewicz. “Towards a new conception of electropolishing of metals and alloys”, International Journal of Materials and Product Technology, 8(2-4), pp.243–252, 1990.
[29] H. Zhao;J. Van Humbeeck; I. De Scheerder. “Surface conditioning of niti and ta stents”, Biomedical Research, pp.439-448, 2001.
[30] 王彗珊,「雷射加工心血管支架的後處理製程研究」,碩士論文,國立臺灣科技大學機械工程研究所,2016。
[31] 曾旭廷,「電鍍用正負脈衝式電源供應器之研製」,碩士論文,國立成功大學電機工程研究所,2001。
[32] J. E. Labarga; J. M. Bsatidas; S. Feliu. “A contribution to the study on electropolishing of mild steel and aluminium using alternating current”, Electrochimica Acta, 36(1), pp.93-95, 1991.
[33] A. H. Bushnell. “Interfacing pulsed power systems to switching power supplies”, In: Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop. Conference Record of the Twenty-Fifth International. IEEE. pp.290-292, 2002.
[34] 施博中,「脈衝電流對電解拋光之影響」,碩士論文,元智大學機械工程研究所,2004。
[35] N. Eliaz; O. Nissan. “Innovative processes for electropolishing of medical devices made of stainless steels”, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 83(2), pp.546-557, 2007.

無法下載圖示 全文公開日期 2023/08/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE