簡易檢索 / 詳目顯示

研究生: 王湘琪
Hsiang-Chi Wang
論文名稱: 以低溫製程合成無機鈣鈦礦量子點及其應用於發光二極體之研究
The Study of Inorganic Perovskite Quantum Dots by Low-Temperature Process and Their Application in Light Emitting Diodes
指導教授: 陳良益
Liang-Yih Chen
口試委員: 邱昱誠
Yu-Cheng Chiu
張志宇
Chih-Yu Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 249
中文關鍵詞: 過飽和再結晶法配體輔助再沉澱法鹵化銫鉛鈣鈦礦量子點發光二極體界面鈍化
外文關鍵詞: cesium lead halide perovskite, light-emitting diode, interfacial passivation, supersaturation recrystallization synthesis method, ligand-assisted reprecipitation synthesis method
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討以過飽和再結晶法以及配體輔助再沉澱法進行溴化銫鉛鈣鈦礦綠光量子點以及溴碘化銫鉛鈣鈦礦紅光量子點之製備與光電性質分析,並以此製備量子點發光二極體進行光電性質分析。由於在過飽和再結晶法所使用的長碳鏈配體,對於載子傳輸會是一大阻礙進而使發光二極體之性能不佳。因此本研究利用配體輔助再沉澱法將量子點表面之長碳鏈配體完全置換成短碳鏈配體後製作成溴化銫鉛鈣鈦礦綠光量子點發光二極體。隨後,透過雙邊鈍化策略,在電洞傳輸層與量子點薄膜間塗佈一層分子層溴化苯乙胺(PEABr),並且於量子點薄膜頂部塗佈聚甲基丙烯酸甲酯(poly (methyl methacrylate),PMMA)高分子層,其最大電流效率與外部量子效率分別為59.7 cd/A與18.7 %。最後,透過在綠光量子點系統中的結論,會選擇以配體輔助再沉澱法來合成溴碘化銫鉛鈣鈦礦紅光量子點,進一步製作成發光二極體,並且利用鈍化策略,在電洞傳輸層與量子點薄膜間塗佈一層分子層碘化苯乙胺(PEA-I),其最大電流效率與外部量子效率分別為1.95 cd/A與2.26 %。


    In this study, the supersaturation recrystallization method and ligand-assisted reprecipitation method were used to investigate the synthesis and optoelectronic properties of cesium lead halide (CsPbX3) perovskite quantum dots. In addition, CsPbX3 PQDs were used to fabricate quantum dot light emission diode (QLED) and analyzed its emission properties. Therefore, in this study, the ligand-assisted reprecipitation method was used to completely replace the surface of the quantum dots with short carbon chain ligands to fabricate CsPbBr3 quantum dot light-emitting diodes. Then, through the bilateral passivation strategy, the 2-phenylethanamine bromide (PEA-Br) is coated between PQDs film and transport layer, and the poly(methyl methacrylate) polymer layer is coated on the top of the CsPbBr3 quantum dot film, which can greatly improve the performance of the device. The maximum current efficiency and external quantum efficiency were respectively 59.7 cd/A with 18.7 %. Subsequently, cesium lead bromide iodide perovskite (CsPb(Br/I)3) red light quantum dots were synthesized by ligand-assisted reprecipitation method to fabricate light-emitting diodes. Through the passivation strategy, the 2-phenylethanamine iodide (PEA-I) is coated between PQDs film and transport layer. The maximum current efficiency and external quantum efficiency were respectively 1.95 cd/A with 2.26 %.

    目錄 中文摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 XII 表目錄 XXXI 第一章、 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章、 理論基礎與回顧 4 2-1 半導體與奈米材料 4 2-1-1 半導體概念與能帶圖 4 2-1-2 奈米材料與特性 7 2-2 鈣鈦礦材料 12 2-2-1 鈣鈦礦結構 12 2-2-2 鈣鈦礦材料發展 13 2-3 CsPbX3鈣鈦礦量子點 14 2-3-1 CsPbX3鈣鈦礦量子點合成 15 2-3-2 提升鈣鈦礦量子點之穩定性 22 2-3-3 鈣鈦礦材料能帶調整 30 2-3-4 鈣鈦礦量子點陰陽離子調控 33 2-4 鈣鈦礦量子點發光二極體 36 2-4-1 發光二極體各層結構介紹 37 2-4-2 探討傳輸層對元件性能的影響 40 2-4-3 探討量子點配體對元件性能的影響 47 2-4-4 界面優化對元件性能影響 56 第三章、 實驗設計 69 3-1 實驗流程圖 69 3-2 實驗藥品 70 3-3 實驗儀器與分析原理 75 3-3-1 超音波震盪器 (Ultrasonic cleaner) 75 3-3-2 攪拌式加熱板 75 3-3-3 管式高溫爐 75 3-3-4 微量天平 76 3-3-5 外光燈 76 3-3-6 旋轉塗佈機 76 3-3-7 手套箱 77 3-3-8 金屬蒸發源系統 (Metal evaporation source system) 78 3-3-9 紫外光-可見光光譜儀(UV/visible Spectrophotometer) 79 3-3-10 螢光光譜儀(Fluorescence Spectrophotometer) 81 3-3-11 絕對量子效率 82 3-3-12 X光繞射分析儀(X-ray Diffraction,XRD) 83 3-3-13 場發穿透式電子顯微鏡 (Transmission electron microscope,TEM) 85 3-3-14 時間解析光致發光測量系統(Time-resolved photoluminescence,TRPL) 87 3-3-15 紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy,UPS) 89 3-3-16 高解析度場發射型掃描式電子顯微鏡 (High Resolution Field-emission Scanning Electron Microscope,FE-SEM) 91 3-3-17 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy,FTIR) 92 3-3-18 電致發光量測系統(Electroluminescence,EL) 94 3-4 實驗步驟 96 3-4-1 以長碳鏈配體進行過飽和再結晶法合成CsPbBr3量子點 96 3-4-2 以短碳鏈配體進行配體輔助再沉澱法合成CsPbBr3量子點 98 3-4-3 以直接合成方式進行配體輔助再沉澱法合成CsPb(Br/I)3量子點 101 3-4-4 量測 CsPbBr3量子點螢光量子效率 103 3-4-5 發光二極體元件製作 106 3-4-6 電子主導元件(electron only device,EOD)製作 115 3-4-7 電洞主導元件(hole only device,HOD)製作 117 3-4-8 發光二極體效能指標介紹 123 3-4-9 電子主導元件與電洞主導元-件之分析與計算 130 第四章、 結果與討論 132 4-1 以過飽和再結晶法以及配體輔助再沉澱法合成CsPbBr3量子點製程優化與性質分析 132 4-1-1 以長碳鏈配體用於過飽和再結晶法進行CsPbBr3量子點合成與性質分析 133 4-1-2 以短碳鏈配體結合配體輔助再沉澱法進行CsPbBr3量子點合成與性質分析 146 4-1-3 探討不同碳鏈長度之配體對CsPbBr3量子點發光二極體性能之影響 159 4-2 以配體輔助再沉澱法進行CsPb(Br/I)3量子點製程優化與性質分析 177 4-2-1 以直接合成方式進行CsPb(Br/I)3量子點合成與性質分析 177 4-2-2 CsPb(Br/I)3量子點發光二極體之性能分析 188 4-3 探討以界面優化提升CsPbX3量子點發光二極體效能之研究 207 第五章、 結論 230 第六章、 參考文獻 231  

    1. J. S. Yao, J. C. Zhang, L. Wang, K. H. Wang, X. C. Ru, J. N. Yang, J. J. Wang, X. Chen, Y. H. Song, Y. C. Yin, Y. F. Lan, Q. Zhang and H. B. Yao, Suppressing auger recombination in cesium lead bromide perovskite nanocrystal film for bright light-emitting diodes, Journal of Physical Chemistry Letters 11 (21), 9371-9378 (2020).
    2. Q. Pan, H. Hu, Y. Zou, M. Chen, L. Wu, D. Yang, X. Yuan, J. Fan, B. Sun and Q. Zhang, Microwave-assisted synthesis of high-quality “all-inorganic” CsPbX3 (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes, Journal of Materials Chemistry C 5 (42), 10947-10954 (2017).
    3. Y. Ye, J. Wang, Y. Qiu, J. Liu, B. Ye, Z. Yang, Z. Gong, L. Xu, Y. Zhou, Q. Huang, Z. Shen, W. Wu, S. Ju, L. Yu, Y. Fu, F. Li and T. Guo, Ultra-low EQE roll-off and marvelous efficiency perovskite quantum-dots light-emitting-diodes achieved by ligand passivation, Nano Energy 90, 106583 (2021).
    4. L. Xu, S. Yuan, H. Zeng and J. Song, A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes, Materials Today Nano 6, 100036 (2019).
    5. H. Tang, S. He and C. Peng, A short progress report on high-efficiency perovskite solar cells, Nanoscale Research Letters 12 (1), 410 (2017).
    6. Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend, Bright light-emitting diodes based on organometal halide perovskite, Nature Nanotechnology 9 (9), 687-692 (2014).
    7. K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong and Z. Wei, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent, Nature 562 (7726), 245-248 (2018).
    8. J. Deng, J. Xun and R. He, Facile and rapid synthesis of high performance perovskite nanocrystals CsPb(X/Br)3 (X= Cl, I) at room temperature, Optical Materials 99, 109528 (2020).
    9. Y. Sun, X. Yang, W. Jiao, J. Wu and Z. Zhao, All-inorganic perovskite quantum dots based on in X3-trioctylphosphine oxide hybrid passivation strategies for high-performance and full-colored light-emitting diodes, ACS Applied Electronic Materials 3 (1), 415-421 (2020).
    10. S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang and D. Pan, Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50-85% photoluminescence quantum yields, Chemical Communications 52 (45), 7265-7268 (2016).
    11. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Gratzel and J. Y. Kim, Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells, Nature 592 (7854), 381-385 (2021).
    12. B. C. Hames, I. Mora-Seró and R. S. Sánchez, Device performance and light characteristics stability of quantum-dot-based white-light-emitting diodes, Nano Research 11 (3), 1575-1588 (2018).
    13. C.-Y. Huang, C. Zou, C. Mao, K. L. Corp, Y.-C. Yao, Y.-J. Lee, C. W. Schlenker, A. K. Y. Jen and L. Y. Lin, CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability, ACS Photonics 4 (9), 2281-2289 (2017).
    14. W. Zheng, Q. Wan, M. Liu, Q. Zhang, C. Zhang, R. Yan, X. Feng, L. Kong and L. Li, CsPbBr3 nanocrystal light-emitting diodes with efficiency up to 13.4% achieved by careful surface engineering and device engineering, The Journal of Physical Chemistry C 125 (5), 3110-3118 (2021).
    15. S. N. Guo, H. Wu, D. Wang and J. X. Wang, Cost-effective strategy for the synthesis of air-stable CH3NH3PbX3 (X = Cl, Br, and I) quantum dots with bright emission, Langmuir 37 (39), 11520-11525 (2021).
    16. J. van Embden, A. S. R. Chesman and J. J. Jasieniak, The heat-up synthesis of colloidal nanocrystals, Chemistry of Materials 27 (7), 2246-2285 (2015).
    17. H. Wu, Y. Zhang, M. Lu, X. Zhang, C. Sun, T. Zhang, V. L. Colvin and W. W. Yu, Surface ligand modification of cesium lead bromide nanocrystals for improved light-emitting performance, Nanoscale 10 (9), 4173-4178 (2018).
    18. Y. H. Kim, C. Wolf, Y. T. Kim, H. Cho, W. Kwon, S. Do, A. Sadhanala, C. G. Park, S. W. Rhee, S. H. Im, R. H. Friend and T. W. Lee, Highly efficient light-emitting diodes of colloidal metal-halide perovskite nanocrystals beyond quantum size, ACS Nano 11 (7), 6586-6593 (2017).
    19. J. Dai, J. Xi, Y. Zu, L. Li, J. Xu, Y. Shi, X. Liu, Q. Fan, J. Zhang, S. Wang, F. Yuan, H. Dong, B. Jiao, X. Hou and Z. Wu, Surface mediated ligands addressing bottleneck of room-temperature synthesized inorganic perovskite nanocrystals toward efficient light-emitting diodes, Nano Energy 70, 104467 (2020).
    20. X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng, CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes, Advanced Functional Materials 26 (15), 2435-2445 (2016).
    21. H. Huang, Y. Li, Y. Tong, E. P. Yao, M. W. Feil, A. F. Richter, M. Doblinger, A. L. Rogach, J. Feldmann and L. Polavarapu, Spontaneous crystallization of perovskite nanocrystals in nonpolar organic solvents: a versatile approach for their shape-controlled synthesis, Angewandte Chemie International Edition 58 (46), 16558-16562 (2019).
    22. J. De Roo, K. De Keukeleere, Z. Hens and I. Van Driessche, From ligands to binding motifs and beyond; the enhanced versatility of nanocrystal surfaces, Dalton Transactions 45 (34), 13277-13283 (2016).
    23. Q. A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato and L. Manna, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions, Journal of the American Chemical Society 137 (32), 10276-10281 (2015).
    24. S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang and D. Pan, Homogeneous synthesis and electroluminescence device of highly luminescent CsPbBr3 perovskite nanocrystals, Inorganic Chemistry 56 (5), 2596-2601 (2017).
    25. J. Song, J. Li, L. Xu, J. Li, F. Zhang, B. Han, Q. Shan and H. Zeng, Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs, Advanced Materials 30 (30), e1800764 (2018).
    26. P. Vashishtha, B. E. Griffith, A. A. M. Brown, T. J. N. Hooper, Y. Fang, M. S. Ansari, A. Bruno, S. H. Pu, S. G. Mhaisalkar, T. White and J. V. Hanna, Performance enhanced light-emitting diodes fabricated from nanocrystalline CsPbBr3 with in situ Zn2+ addition, ACS Applied Electronic Materials 2 (12), 4002-4011 (2020).
    27. R. Qu, L. Zou, X. Qi, C. Liu, W. Zhao, J. Yan, Z. Zhang and Y. Wu, Changing the shape and optical properties of CsPbBr3 perovskite nanocrystals with hydrohalic acids using a room-temperature synthesis process, Chemistry, crystallography 22 (10), 1853-1857 (2020).
    28. L. Wu, Q. Zhong, D. Yang, M. Chen, H. Hu, Q. Pan, H. Liu, M. Cao, Y. Xu, B. Sun and Q. Zhang, Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand, Langmuir 33 (44), 12689-12696 (2017).
    29. Y. Zu, J. Dai, L. Li, F. Yuan, X. Chen, Z. Feng, K. Li, X. Song, F. Yun, Y. Yu, B. Jiao, H. Dong, X. Hou, M. Ju and Z. Wu, Ultra-stable CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield via postsynthetic surface engineering, Journal of Materials Chemistry A 7 (45), 26116-26122 (2019).
    30. W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon and R. G. Palgrave, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system, Chemical Science 7 (7), 4548-4556 (2016).
    31. J. A. Christians, P. A. Miranda Herrera and P. V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air, Journal of the American Chemical Society 137 (4), 1530-1538 (2015).
    32. C. Caddeo, M. I. Saba, S. Meloni, A. Filippetti and A. Mattoni, Collective molecular mechanisms in the CH3NH3PbI3 dissolution by liquid water, ACS Nano 11 (9), 9183-9190 (2017).
    33. H. Zhou, J. Wang, M. Wang and S. Lin, Competing dissolution pathways and ligand passivation-enhanced interfacial stability of hybrid perovskites with liquid water, ACS Applied Materials & Interfaces 12 (20), 23584-23594 (2020).
    34. S. Huang, Z. Li, B. Wang, N. Zhu, C. Zhang, L. Kong, Q. Zhang, A. Shan and L. Li, Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination, ACS Applied Materials & Interfaces 9 (8), 7249-7258 (2017).
    35. H. Moon, C. Lee, W. Lee, J. Kim and H. Chae, Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications, Advanced Materials 31 (34), e1804294 (2019).
    36. F. Krieg, S. T. Ochsenbein, S. Yakunin, S. Ten Brinck, P. Aellen, A. Suess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C. J. Shih, I. Infante and M. V. Kovalenko, Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability, ACS Energy Letters 3 (3), 641-646 (2018).
    37. P. Cao, B. Yang, F. Zheng, L. Wang and J. Zou, High stability of silica-wrapped CsPbBr3 perovskite quantum dots for light emitting application, Ceramics International 46 (3), 3882-3888 (2020).
    38. G. Almeida, L. Goldoni, Q. Akkerman, Z. Dang, A. H. Khan, S. Marras, I. Moreels and L. Manna, Role of acid-base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals, ACS Nano 12 (2), 1704-1711 (2018).
    39. E. Moyen, A. Kanwat, S. Cho, H. Jun, R. Aad and J. Jang, Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices, Nanoscale 10 (18), 8591-8599 (2018).
    40. J. De Roo, M. Ibanez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko and Z. Hens, Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals, ACS Nano 10 (2), 2071-2081 (2016).
    41. B. Luo, S. B. Naghadeh, A. L. Allen, X. Li and J. Z. Zhang, Peptide‐passivated lead halide perovskite nanocrystals based on synergistic effect between amino and carboxylic functional groups, Advanced Functional Materials 27 (6), 1604018 (2017).
    42. J. Pan, Y. Shang, J. Yin, M. De Bastiani, W. Peng, I. Dursun, L. Sinatra, A. M. El-Zohry, M. N. Hedhili, A. H. Emwas, O. F. Mohammed, Z. Ning and O. M. Bakr, Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes, Journal of the American Chemical Society 140 (2), 562-565 (2018).
    43. J. Zhang, P. Jiang, Y. Wang, X. Liu, J. Ma and G. Tu, In situ synthesis of ultrastable CsPbBr3 perovskite nanocrystals coated with polyimide in a CSTR system, ACS Applied Materials & Interfaces 12 (2), 3080-3085 (2020).
    44. H. Sun, Z. Yang, M. Wei, W. Sun, X. Li, S. Ye, Y. Zhao, H. Tan, E. L. Kynaston, T. B. Schon, H. Yan, Z. H. Lu, G. A. Ozin, E. H. Sargent and D. S. Seferos, Chemically addressable perovskite nanocrystals for light-emitting applications, Advanced Materials 29 (34), 1701153 (2017).
    45. Y. Xin, H. Zhao and J. Zhang, Highly stable and luminescent perovskite-polymer composites from a convenient and universal strategy, ACS Applied Materials & Interfaces 10 (5), 4971-4980 (2018).
    46. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX(3), X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut, Nano Letters 15 (6), 3692-3696 (2015).
    47. S. Seth, T. Ahmed, A. De and A. Samanta, Tackling the defects, stability, and photoluminescence of CsPbX3 perovskite nanocrystals, ACS Energy Letters 4 (7), 1610-1618 (2019).
    48. J. Y. Woo, Y. Kim, J. Bae, T. G. Kim, J. W. Kim, D. C. Lee and S. Jeong, Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation, Chemistry of Materials 29 (17), 7088-7092 (2017).
    49. P. Liu, W. Chen, W. Wang, B. Xu, D. Wu, J. Hao, W. Cao, F. Fang, Y. Li, Y. Zeng, R. Pan, S. Chen, W. Cao, X. W. Sun and K. Wang, Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance, Chemistry of Materials 29 (12), 5168-5173 (2017).
    50. T. Ahmed, S. Seth and A. Samanta, Boosting the photoluminescence of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals covering a wide wavelength range by postsynthetic treatment with tetrafluoroborate salts, Chemistry of Materials 30 (11), 3633-3637 (2018).
    51. B. A. Koscher, J. K. Swabeck, N. D. Bronstein and A. P. Alivisatos, Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment, Journal of the American Chemical Society 139 (19), 6566-6569 (2017).
    52. S. Wang, X. Shen, Y. Zhang, X. Zhuang, D. Xue, X. Zhang, J. Wu, J. Zhu, Z. Shi, S. V. Kershaw, W. W. Yu and A. L. Rogach, Oxalic acid enabled emission enhancement and continuous extraction of chloride from cesium lead chloride/bromide perovskite nanocrystals, Small 15 (34), 1901828 (2019).
    53. F. Brivio, A. B. Walker and A. Walsh, Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles, APL Materials 1 (4), 042111 (2013).
    54. X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan and S. Chen, High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes, The Royal Society of Chemistry 7 (17), 10391-10396 (2017).
    55. S. Sun, D. Yuan, Y. Xu, A. Wang and Z. Deng, Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature, ACS Nano 10 (3), 3648-3657 (2016).
    56. I. Borriello, G. Cantele and D. Ninno, Ab initioinvestigation of hybrid organic-inorganic perovskites based on tin halides, Physical Review B 77 (23), 235214 (2008).
    57. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy & Environmental Science 7 (3), 982 (2014).
    58. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma and S. Hayase, CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm, Journal of Physical Chemistry Letters 5 (6), 1004-1011 (2014).
    59. K. Hong, Q. V. Le, S. Y. Kim and H. W. Jang, Low-dimensional halide perovskites: review and issues, Journal of Materials Chemistry C 6 (9), 2189-2209 (2018).
    60. J. B. Hoffman, A. L. Schleper and P. V. Kamat, Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3-x through halide exchange, Journal of the American Chemical Society 138 (27), 8603-8611 (2016).
    61. W. Lv, X. Tang, L. Li, L. Xu, M. Li, R. Chen and W. Huang, Assessment for anion-exchange reaction in CsPbX3 (X = Cl, Br, I) nanocrystals from bond strength of inorganic salt, The Journal of Physical Chemistry C 123 (39), 24313-24320 (2019).
    62. H. Huang, Y. Li, Y. Tong, E. P. Yao, M. W. Feil, A. F. Richter, M. Doblinger, A. L. Rogach, J. Feldmann and L. Polavarapu, Spontaneous Crystallization of Perovskite Nanocrystals in Nonpolar Organic Solvents: A Versatile Approach for their Shape-Controlled Synthesis, Angew Chem Int Ed Engl 58 (46), 16558-16562 (2019).
    63. J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend and W. Huang, Interfacial control toward efficient and low-voltage perovskite light-emitting diodes, Advanced Materials 27 (14), 2311-2316 (2015).
    64. A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P. M. Pearce, F. Deschler, R. L. Hoye, K. C. Godel, T. Bein, P. Docampo, S. E. Dutton, M. F. De Volder and R. H. Friend, Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications, Nano Letters 15 (9), 6095-6101 (2015).
    65. N. K. Kumawat, X. K. Liu, D. Kabra and F. Gao, Blue perovskite light-emitting diodes: progress, challenges and future directions, Nanoscale 11 (5), 2109-2120 (2019).
    66. M. Shibata, Y. Sakai and D. Yokoyama, Advantages and disadvantages of vacuum-deposited and spin-coated amorphous organic semiconductor films for organic light-emitting diodes, Journal of Materials Chemistry C 3 (42), 11178-11191 (2015).
    67. Y. H. Kim, H. Cho and T. W. Lee, Metal halide perovskite light emitters, Proceedings of the National Academy of Sciences 113 (42), 11694-11702 (2016).
    68. T. Fang, T. Wang, X. Li, Y. Dong, S. Bai and J. Song, Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport, Science Bulletin 66 (1), 36-43 (2021).
    69. B. Han, Q. Shan, F. Zhang, J. Song and H. Zeng, Giant efficiency and color purity enhancement in multicolor inorganic perovskite light-emitting diodes via heating-assisted vacuum deposition, Journal of Semiconductors 41 (5), 052205 (2020).
    70. C. Bi, S. Wang, Q. Li, S. V. Kershaw, J. Tian and A. L. Rogach, Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission, Journal of Physical Chemistry Letters 10 (5), 943-952 (2019).
    71. J. Chen, Z. Shen, P. Liu, Z. Sun, J. G. Liu, C. Shen, D. Song, S. Zhao and Z. Xu, Synergistic function of doping and ligand engineering to enhance the photostability and electroluminescence performance of CsPbBr3 quantum dots, Nanotechnology 32 (32), 325202 (2021).
    72. L. Tang, J. Qiu, Q. Wei, H. Gu, B. Du, H. Du, W. Hui, Y. Xia, Y. Chen and W. Huang, Enhanced performance of perovskite light-emitting diodes via diamine interface modification, ACS Applied Materials & Interfaces 11 (32), 29132-29138 (2019).
    73. Q.-W. Liu, S. Yuan, S.-Q. Sun, W. Luo, Y.-J. Zhang, L.-S. Liao and M.-K. Fung, Interfacial engineering for highly efficient quasi-two dimensional organic–inorganic hybrid perovskite light-emitting diodes, Journal of Materials Chemistry C 7 (15), 4344-4349 (2019).
    74. S. M. H. Qaid, H. M. Ghaithan, B. A. Al-Asbahi and A. S. Aldwayyan, Investigation of the surface passivation effect on the optical properties of CsPbBr3 perovskite quantum dots, Surfaces and Interfaces 23, 100948 (2021).
    75. K. Yang, F. Li, H. Hu, T. Guo and T. W. Kim, Surface engineering towards highly efficient perovskite light-emitting diodes, Nano Energy 65, 104029 (2019).
    76. Z. Shi, S. Li, Y. Li, H. Ji, X. Li, D. Wu, T. Xu, Y. Chen, Y. Tian, Y. Zhang, C. Shan and G. Du, Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes, ACS Nano 12 (2), 1462-1472 (2018).
    77. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han and H. Zeng, 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control, Advanced Materials 29 (5), 1603885 (2017).
    78. J. Song, J. Li, X. Li, L. Xu, Y. Dong and H. Zeng, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3), Advanced Materials 27 (44), 7162-7167 (2015).
    79. E. Yoon, K. Y. Jang, J. Park and T. W. Lee, Understanding the synergistic effect of device architecture design toward efficient perovskite light‐emitting diodes using interfacial layer engineering, Advanced Materials Interfaces 8 (3), 2001712 (2020).
    80. Q. Shan, J. Li, J. Song, Y. Zou, L. Xu, J. Xue, Y. Dong, C. Huo, J. Chen, B. Han and H. Zeng, All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability, Journal of Materials Chemistry C 5 (18), 4565-4570 (2017).
    81. C.-H. Tien, N.-P. Yeh, K.-L. Lee and L.-C. Chen, Achieving matrix quantum dot light-emitting display based on all-inorganic CsPbBr₃ perovskite nanocrystal composites, Institute of Electrical and Electronics Engineers 9, 128919-128924 (2021).
    82. C. Zheng, X. Zheng, C. Feng, S. Ju, Z. Xu, Y. Ye, T. Guo and F. Li, High-brightness perovskite quantum dot light-emitting devices using inkjet printing, Organic Electronics 93, 106168 (2021).
    83. F. Jin, B. Zhao, B. Chu, H. Zhao, Z. Su, W. Li and F. Zhu, Morphology control towards bright and stable inorganic halide perovskite light-emitting diodes, Journal of Materials Chemistry C 6 (6), 1573-1578 (2018).
    84. N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir and S. Mhaisalkar, Inorganic halide perovskites for efficient light-emitting diodes, Journal of Physical Chemistry Letters 6 (21), 4360-4364 (2015).
    85. J. H. Park, A. Y. Lee, J. C. Yu, Y. S. Nam, Y. Choi, J. Park and M. H. Song, Surface ligand engineering for efficient perovskite nanocrystal-based light-emitting diodes, ACS Applied Materials & Interfaces 11 (8), 8428-8435 (2019).
    86. Y. Lu, Z. Wang, J. Chen, Y. Peng, X. Tang, Z. Liang, F. Qi and W. Chen, Tuning hole transport layers and optimizing perovskite films thickness for high efficiency CsPbBr3 nanocrystals electroluminescence light-emitting diodes, Journal of Luminescence 234, 117952 (2021).
    87. Y. Xu, T. Chen, Z. Xie, W. Jiang, L. Wang, W. Jiang and X. Zhang, Enhanced performance of perovskite light-emitting-diodes based on ionic liquid modified CsPbBr3 nanocrystals, Optical Materials 111, 110620 (2021).
    88. M. De Franco, M. Cirignano, T. Cavattoni, H. Bahmani Jalali, M. Prato and F. Di Stasio, Facile purification protocol of CsPbBr3 nanocrystals for light-emitting diodes with improved performance, Optical Materials: X 13, 100124 (2022).
    89. Z. Wang, Z. Luo, C. Zhao, Q. Guo, Y. Wang, F. Wang, X. Bian, A. Alsaedi, T. Hayat and Z. a. Tan, Efficient and stable pure green all-inorganic perovskite CsPbBr3 light-emitting diodes with a solution-processed NiOx interlayer, The Journal of Physical Chemistry C 121 (50), 28132-28138 (2017).
    90. P. Wang, Z. Wu, M. Wu, J. Wei, Y. Sun and Z. Zhao, All-solution-processed, highly efficient and stable green light-emitting devices based on Zn-doped CsPbBr3/ZnS heterojunction quantum dots, Journal of Materials Science 56 (6), 4161-4171 (2020).
    91. H. Wang, H. Yuan, J. Yu, C. Zhang, K. Li, M. You, W. Li, J. Shao, J. Wei, X. Zhang, R. Chen, X. Yang and W. Zhao, Boosting the Efficiency of NiOx-Based Perovskite Light-Emitting Diodes by Interface Engineering, ACS Appl Mater Interfaces 12 (47), 53528-53536 (2020).
    92. W. S. Chen, S. H. Yang, W. C. Tseng, W. W. Chen and Y. C. Lu, Utilization of nanoporous nickel oxide as the hole injection layer for quantum dot light-emitting diodes, ACS Omega 6 (20), 13447-13455 (2021).
    93. J. Dai, J. Xi, L. Li, J. Zhao, Y. Shi, W. Zhang, C. Ran, B. Jiao, X. Hou, X. Duan and Z. Wu, Charge transport between coupling colloidal perovskite quantum dots assisted by functional conjugated ligands, Angewandte Chemie International Edition 57 (20), 5754-5758 (2018).
    94. N. K. Kumawat, A. Swarnkar, A. Nag and D. Kabra, Ligand engineering to improve the luminance efficiency of CsPbBr3 nanocrystal based light-emitting diodes, The Journal of Physical Chemistry C 122 (25), 13767-13773 (2018).
    95. D. Yang, P. Li, Y. Zou, M. Cao, H. Hu, Q. Zhong, J. Hu, B. Sun, S. Duhm, Y. Xu and Q. Zhang, Interfacial synthesis of monodisperse CsPbBr3 nanorods with tunable aspect ratio and clean surface for efficient light-emitting diode applications, Chemistry of Materials 31 (5), 1575-1583 (2019).
    96. W. Chen, X. Tang, P. Wangyang, Z. Yao, D. Zhou, F. Chen, S. Li, H. Lin, F. Zeng, D. Wu, K. Sun, M. Li, Y. Huang, W. Hu, Z. Zang and J. Du, Surface‐passivated cesium lead halide perovskite quantum dots: toward efficient light‐emitting diodes with an inverted sandwich structure, Advanced Optical Materials 6 (14), 1800007 (2018).
    97. M. Lu, J. Guo, S. Sun, P. Lu, X. Zhang, Z. Shi, W. W. Yu and Y. Zhang, Surface ligand engineering-assisted CsPbI3 quantum dots enable bright and efficient red light-emitting diodes with a top-emitting structure, Chemical Engineering Journal 404, 126563 (2021).
    98. H. Li, W. Dong, X. Shen, C. Ge, Y. Song, Z. Wang, A. Wang, Z. Yang, M. Hao, Y. Zhang, W. Zheng, X. Zhang and Q. Dong, Enhancing the efficiency and stability of CsPbI3 nanocrystal-based light-emitting diodes through ligand engineering with octylamine, The Journal of Physical Chemistry C 126 (2), 1085-1093 (2022).
    99. Z.-L. Tseng, Y.-S. Huang, Y.-L. Liu, T.-L. Wu and Y.-J. Wei, Tetraoctylammonium bromide-passivated CsPbI3−xBrx perovskite nanoparticles with improved stability for efficient red light-emitting diodes, Journal of Alloys and Compounds 897, 163182 (2022).
    100. X. Dai, Y. Deng, X. Peng and Y. Jin, Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization, Advanced Materials 29 (14), 1607022 (2017).
    101. J. Pan, L. N. Quan, Y. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. Yuan, L. Sinatra, N. M. Alyami, J. Liu, E. Yassitepe, Z. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent and O. M. Bakr, Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering, Advanced Materials 28 (39), 8718-8725 (2016).
    102. X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin and J. You, Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation, Nature Communications 9 (1), 570 (2018).
    103. Y. Fu, M. T. Rea, J. Chen, D. J. Morrow, M. P. Hautzinger, Y. Zhao, D. Pan, L. H. Manger, J. C. Wright, R. H. Goldsmith and S. Jin, Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in thin films, Chemistry of Materials 29 (19), 8385-8394 (2017).
    104. Q. A. Akkerman, G. Raino, M. V. Kovalenko and L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals, Nature Materials 17 (5), 394-405 (2018).
    105. W. Zou, R. Li, S. Zhang, Y. Liu, N. Wang, Y. Cao, Y. Miao, M. Xu, Q. Guo, D. Di, L. Zhang, C. Yi, F. Gao, R. H. Friend, J. Wang and W. Huang, Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes, Nature Communications 9 (1), 608 (2018).
    106. J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, H. He, D. Di, C. Lin, Y. Cheng, J. Wang and Y. Jin, Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses, ACS Nano 11 (11), 11100-11107 (2017).
    107. Y. Wang, Y. Teng, P. Lu, X. Shen, P. Jia, M. Lu, Z. Shi, B. Dong, W. W. Yu and Y. Zhang, Low roll‐off perovskite quantum dot light‐emitting diodes achieved by augmenting hole mobility, Advanced Functional Materials 30 (19), 1910140 (2020).
    108. T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa and J. Kido, Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices, Nature Photonics 12 (11), 681-687 (2018).
    109. J. N. Yang, Y. Song, J. S. Yao, K. H. Wang, J. J. Wang, B. S. Zhu, M. M. Yao, S. U. Rahman, Y. F. Lan, F. J. Fan and H. B. Yao, Potassium bromide surface passivation on CsPbI3-xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes, Journal of the American Chemical Society 142 (6), 2956-2967 (2020).
    110. J. Li, J. Chen, L. Xu, S. Liu, S. Lan, X. Li and J. Song, A zinc non-halide dopant strategy enables efficient perovskite CsPbI3 quantum dot-based light-emitting diodes, Materials Chemistry Frontiers 4 (5), 1444-1453 (2020).
    111. S. Guo, H. Liu, H. He, W. Wang, L. Jiang, X. Xiong and L. Wang, Eco-friendly strategy to improve durability and stability of zwitterionic capping ligand colloidal CsPbBr3 nanocrystals, Langmuir 36 (24), 6775-6781 (2020).
    112. Y. Zu, J. Xi, L. Li, J. Dai, S. Wang, F. Yun, B. Jiao, H. Dong, X. Hou and Z. Wu, High-brightness and color-tunable FAPbBr3 perovskite nanocrystals 2.0 enable ultrapure green luminescence for achieving recommendation 2020 displays, ACS Applied Materials & Interfaces 12 (2), 2835-2841 (2020).
    113. Z. Shi, Y. Li, S. Li, X. Li, D. Wu, T. Xu, Y. Tian, Y. Chen, Y. Zhang, B. Zhang, C. Shan and G. Du, Localized surface plasmon enhanced all-inorganic perovskite quantum dot light-emitting diodes based on coaxial core/shell heterojunction architecture, Advanced Functional Materials 28 (20), 1707031 (2018).
    114. H. Li, Y. Qian, X. Xing, J. Zhu, X. Huang, Q. Jing, W. Zhang, C. Zhang and Z. Lu, Enhancing luminescence and photostability of CsPbBr3 nanocrystals via surface passivation with silver complex, The Journal of Physical Chemistry C 122 (24), 12994-13000 (2018).
    115. S. Li, Z. Shi, F. Zhang, L. Wang, Z. Ma, D. Yang, Z. Yao, D. Wu, T.-T. Xu, Y. Tian, Y. Zhang, C. Shan and X. J. Li, Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices, Chemistry of Materials 31 (11), 3917-3928 (2019).
    116. H. Chen, L. Fan, R. Zhang, W. Liu, Q. Zhang, R. Guo, S. Zhuang and L. Wang, Sodium ion modifying in situ fabricated CsPbBr3 nanoparticles for efficient perovskite light emitting diodes, Advanced Optical Materials 7 (21), 1900747 (2019).
    117. W.-C. Chen, Y.-H. Fang, L.-G. Chen, F.-C. Liang, Z.-L. Yan, H. Ebe, Y. Takahashi, T. Chiba, J. Kido and C.-C. Kuo, High luminescence and external quantum efficiency in perovskite quantum-dots light-emitting diodes featuring bilateral affinity to silver and short alkyl ligands, Chemical Engineering Journal 414, 128866 (2021).
    118. D. Belaineh, J.-K. Tan, R.-Q. Png, P.-F. Dee, Y.-M. Lee, B.-N. N. Thi, N.-S. Ridzuan and P. K. H. Ho, Perfluorinated ionomer-modified hole-injection layers: ultrahigh-workfunction but nonohmic contacts, Advanced Functional Materials 25 (34), 5504-5511 (2015).
    119. W. Bi, Q. Cui, P. Jia, X. Huang, Y. Zhong, D. Wu, Y. Tang, S. Shen, Y. Hu, Z. Lou, F. Teng, X. Liu and Y. Hou, Efficient quasi-two-dimensional perovskite light-emitting diodes with improved multiple quantum well structure, ACS Applied Materials & Interfaces 12 (1), 1721-1727 (2020).
    120. Y. Wang, T. Zhang, M. Kan, Y. Li, T. Wang and Y. Zhao, Efficient α-CsPbI3 photovoltaics with surface terminated organic cations, Joule 2 (10), 2065-2075 (2018).
    121. L. Song, X. Guo, Y. Hu, Y. Lv, J. Lin, Y. Fan, N. Zhang and X. Liu, Improved performance of CsPbBr3 perovskite light-emitting devices by both boundary and interface defects passivation, Nanoscale 10 (38), 18315-18322 (2018).
    122. X. Liu, X. Guo, Y. Lv, Y. Hu, Y. Fan, J. Lin, X. Liu and X. Liu, High brightness and enhanced stability of CsPbBr3‐based perovskite light‐emitting diodes by morphology and interface engineering, Advanced Optical Materials 6 (24), 1801245 (2018).
    123. G. Li, J. Huang, Y. Li, J. Tang and Y. Jiang, Highly bright and low turn-on voltage CsPbBr3 quantum dot LEDs via conjugation molecular ligand exchange, Nano Research 12 (1), 109-114 (2018).
    124. L. Xu, J. Li, B. Cai, J. Song, F. Zhang, T. Fang and H. Zeng, A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes, Nature Communications 11 (1), 3902 (2020).
    125. A. Fakharuddin, W. Qiu, G. Croes, A. Devižis, R. Gegevičius, A. Vakhnin, C. Rolin, J. Genoe, R. Gehlhaar, A. Kadashchuk, V. Gulbinas and P. Heremans, Reduced efficiency roll‐off and improved stability of mixed 2D/3D perovskite light emitting diodes by balancing charge injection, Advanced Functional Materials 29 (37), 1904101 (2019).
    126. Y. Zou, M. Ban, Y. Yang, S. Bai, C. Wu, Y. Han, T. Wu, Y. Tan, Q. Huang, X. Gao, T. Song, Q. Zhang and B. Sun, Boosting perovskite light-emitting diode performance via tailoring interfacial contact, ACS Applied Materials & Interfaces 10 (28), 24320-24326 (2018).
    127. K. Jia, L. Song, Y. Hu, X. Guo, X. Liu, C. Geng, S. Xu, R. Fan, L. Huang, N. Luan and W. Bi, Improved performance for thermally evaporated perovskite Light-emitting devices via defect passivation and carrier regulation, ACS Applied Materials & Interfaces 12 (13), 15928-15933 (2020).
    128. H. Cho, C. Wolf, J. S. Kim, H. J. Yun, J. S. Bae, H. Kim, J. M. Heo, S. Ahn and T. W. Lee, High-efficiency solution-processed inorganic metal halide perovskite light-emitting diodes, Advanced Materials 29 (31), 1700579 (2017).
    129. H. Zhu, Y. Tian, S. Yang, Y. Shen, E. Xu, J. Tang and Y. Jiang, Enhancing the properties of perovskite quantum dot light emitting devices through grid structures formed by trioctylphosphine oxide, Journal of Materials Chemistry C 8 (29), 9861-9866 (2020).
    130. Y. Ling, Y. Tian, X. Wang, J. C. Wang, J. M. Knox, F. Perez-Orive, Y. Du, L. Tan, K. Hanson, B. Ma and H. Gao, Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes, Advanced Materials 28 (40), 8983-8989 (2016).
    131. J. Li, S. G. Bade, X. Shan and Z. Yu, Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films, Advanced Materials 27 (35), 5196-5202 (2015).
    132. L. Song, X. Guo, Y. Hu, Y. Lv, J. Lin, Z. Liu, Y. Fan and X. Liu, Efficient inorganic perovskite light-emitting diodes with polyethylene glycol passivated ultrathin CsPbBr3 films, Journal of Physical Chemistry Letters 8 (17), 4148-4154 (2017).
    133. J. Song, T. Fang, J. Li, L. Xu, F. Zhang, B. Han, Q. Shan and H. Zeng, Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48, Advanced Materials 30 (50), e1805409 (2018).
    134. G. Li, F. W. Rivarola, N. J. Davis, S. Bai, T. C. Jellicoe, F. de la Pena, S. Hou, C. Ducati, F. Gao, R. H. Friend, N. C. Greenham and Z. K. Tan, Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method, Advanced Materials 28 (18), 3528-3534 (2016).
    135. K. M. M. Salim, E. Hassanabadi, S. Masi, A. F. Gualdrón-Reyes, M. Franckevicius, A. Devižis, V. Gulbinas, A. Fakharuddin and I. Mora-Seró, Optimizing performance and operational stability of CsPbI3 quantum-dot-based light-emitting diodes by interface engineering, ACS Applied Electronic Materials 2 (8), 2525-2534 (2020).
    136. Y. F. Lan, J. S. Yao, J. N. Yang, Y. H. Song, X. C. Ru, Q. Zhang, L. Z. Feng, T. Chen, K. H. Song and H. B. Yao, Spectrally stable and efficient pure red CsPbI3 quantum dot light-emitting diodes enabled by sequential ligand post-treatment strategy, Nano Letters 21 (20), 8756-8763 (2021).
    137. M. Lu, J. Guo, S. Sun, P. Lu, J. Wu, Y. Wang, S. V. Kershaw, W. W. Yu, A. L. Rogach and Y. Zhang, Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification, Nano Letters 20 (4), 2829-2836 (2020).
    138. S. T. Ochsenbein, F. Krieg, Y. Shynkarenko, G. Raino and M. V. Kovalenko, Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals, ACS Applied Materials & Interfaces 11 (24), 21655-21660 (2019).
    139. S. Zhang, H. Liu, X. Li and S. Wang, Enhancing quantum yield of CsPb(BrxCl1-x)3 nanocrystals through lanthanum doping for efficient blue light-emitting diodes, Nano Energy 77, 105302 (2020).
    140. X. Zheng, S. Yuan, J. Liu, J. Yin, F. Yuan, W.-S. Shen, K. Yao, M. Wei, C. Zhou, K. Song, B.-B. Zhang, Y. Lin, M. N. Hedhili, N. Wehbe, Y. Han, H.-T. Sun, Z.-H. Lu, T. D. Anthopoulos, O. F. Mohammed, E. H. Sargent, L.-S. Liao and O. M. Bakr, Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides rnables efficient rec. 2020 blue light-emitting diodes, ACS Energy Letters 5 (3), 793-798 (2020).
    141. S.-K. Kim, H. Yang and Y.-S. Kim, Control of carrier injection and transport in quantum dot light emitting diodes (QLEDs) via modulating Schottky injection barrier and carrier mobility, Journal of Applied Physics 126 (18), 185702 (2019).
    142. M. I. Saidaminov, M. A. Haque, J. Almutlaq, S. Sarmah, X.-H. Miao, R. Begum, A. A. Zhumekenov, I. Dursun, N. Cho, B. Murali, O. F. Mohammed, T. Wu and O. M. Bakr, Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection, Advanced Optical Materials 5 (2), 1600704 (2017).
    143. S. Mourdikoudis and L. M. Liz-Marzán, Oleylamine in Nanoparticle Synthesis, Chemistry of Materials 25 (9), 1465-1476 (2013).
    144. Y. Zheng, W. Liu, Q. Wang, Y. Sun, G. Li, T. Wu and Y. Li, Study of STAB- and DDAB-modified sepiolite tructures and their adsorption performance for emulsified oil in produced water, Colloid and Interface Science Communications 34 (2020).
    145. M. Terashima, T. Miyayama, T. Shirao, H. W. Mo, Y. Hatae, H. Fujimoto and K. Watanabe, The electronic band structure analysis of OLED device by means of in situ LEIPS and UPS combined with GCIB, Surface and Interface Analysis 52 (12), 948-952 (2020).
    146. J. Chen, D. Song, Z. Xu, S. Zhao, B. Qiao, W. Zheng, P. Wang, X. Zheng and W. Wu, Solvent treatment induced interface dipole and defect passivation for efficient and bright red quantum dot light-emitting diodes, Organic Electronics 75, 105412 (2019).
    147. S. Yang, C. Bi, W. Dong, X. Zhang, W. Zheng, W. C. H. Choy and J. Tian, Electron delocalization in CsPbI3 quantum dots enables efficient light‐emitting diodes with improved efficiency roll‐off, Advanced Optical Materials 10 (11), 2200189 (2022).

    無法下載圖示 全文公開日期 2024/08/08 (校內網路)
    全文公開日期 2024/08/08 (校外網路)
    全文公開日期 2024/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE