簡易檢索 / 詳目顯示

研究生: 尤楨宜
Chen-Yi Yu
論文名稱: 製作頂部閘極底部接觸之有機薄膜電晶體及其效能之研究
Study the fabrication and performance of top gate and bottom contact organic thin film transistor
指導教授: 戴龑
Yian Tai
口試委員: 王丞浩
Chen-Hao Wang
王澤元
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 98
中文關鍵詞: 有機薄膜電晶體自組裝單分子薄膜
外文關鍵詞: organic thin film transistor, self-assembled monolayer
相關次數: 點閱:434下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文之主要研究為利用自組裝單分子層薄膜 ( SAM ) 修飾有

機薄膜電機體元件的氧化銦錫 ( ITO ) 電極表面;藉由不同官能基之

自組裝單分子層薄膜分子成長於氧化銦錫( ITO ) 基板上,可改變其

表面潤濕性、表面極性等性質,藉以了解其對元件電流值之影響。

在實驗中,藉由接觸角量測儀、原子力顯微鏡 ( AFM )、掃描式

電子顯微鏡 ( SEM ) 和 X 光繞射分析儀 ( XRD ) 分析經由 SAM 修

飾的 ITO 玻璃基板對於聚 3-己基噻酚 ( P3HT ) 的影響。從 AFM 和

SEM 的圖像分析得知, SAM 對於 P3HT 薄膜的表面粗糙度無太大影

響;而從 XRD 的圖譜可得知 SAM 能使 P3HT 薄膜之 ( 100 ) 面具有

更好的結晶度。

在元件方面,利用三種不同官能基的 SAM 應用於元件內,可發

現經由 SAM 修飾能明顯地增加電流值,並可提高開/關電流比。最

後,我們使用新合成的高分子材料取代 P3HT 主動層,組裝具透明性

的有機薄膜電晶體元件。


This research is focused on the modification of ITO electrode

surface by self-assembled monolayers (SAMs) in organic thin film

transistors (OTFTs). The surface wettability and surface polarity of ITO

are modulated by SAMs with different functional groups, and the

correlation between surface modification and current of the OTFTs

device is investigated.

The properties of P3HT fabricated on SAM-modified ITO was

characterized by contact angle, atomic force microscope (AFM), scanning

electron microscope (SEM) and x-ray diffraction (XRD). From the results

of AFM and XRD, the effect of SAM is not significance. But from the

XRD spectrum, the SAM could improve crystallization of P3HT (100)

orientation.

The device was modified by three different functional groups of

SAMs. The SAM significantly improved the current and on/off ratio by

measuring the I-V curve. Finally, in order to make the transparent organic

thin film transistors, we try to instead of the P3HT active layer by new

polymer materials.

目錄 中文摘要...............................................................................I 英文摘要...............................................................................II 致 謝..............................................................................III 目 錄............................................................................. IV 表 目 錄............................................................................ VII 圖 目 錄..............................................................................XI 第一章 緒論 ................................................................................................ 1 1-1 無機/有機半導體發展.......................................................................... 1 1-1-1 無機/有機電晶體之發展..................................................................... 1 1-1-2 軟性電子元件 ...................................................................................... 7 1-2 以自組裝單分子薄膜應用於有機薄膜電晶體之相關文獻............... 9 1-2-1 自組裝單分子層薄膜簡介................................................................... 9 1-2-2 自組裝單分子薄膜應用於有機光電元件之文獻 ............................ 12 1-2-3 自組裝單分子薄膜應用於 Top gate Bottom contact OTFT 之文獻 15 1-3 研究動機與大綱.................................................................................19 1-3-1 研究動機............................................................................................ 19 第二章 薄膜電晶體基本原理 .....................................................................20 2-1 無機/有機半導體材料傳導機制...........................................................20 IV 2-1-1 無機半導體傳導機制........................................................................ 20 2-1-2 有機半導體傳導機制........................................................................ 22 2-2 有機薄膜電晶體之結構與操作模型....................................................24 2-3 有機薄膜電晶體重要參數....................................................................27 第三章 實驗方法與步驟 .............................................................................32 3-1 實驗藥品.............................................................................................32 3-2 實驗儀器.............................................................................................34 3-3 有機薄膜電晶體元件製備................................................................. 35 3-3-1 基板之圖樣化與清洗程序................................................................. 35 3-3-2 成長自組裝單分子薄膜.................................................................... 40 3-3-3 元件製備流程.................................................................................... 42 3-3-3-1 主動層 ( P3HT ) 之塗佈............................................... .44 3-3-3-2 介電層 ( PMMA ) 之塗佈............................................. .45 3-3-3-3 閘極 ( Gate, Al ) 之蒸鍍............................................... .47 3-3-3-4 元件之量測............................................................... .47 3-4 樣品分析量測儀器簡介.....................................................................47 3-4-1 接觸角量測儀 ( Contact angle,CA ) ................................................ 47 3-4-2 半導體量測儀器................................................................................ 47 3-4-3 原子力顯微鏡.................................................................................... 48 V 3-4-4 小角度 X-ray 繞射儀 ( Grazing X-ray Diffraction, XRD ).............. 50 3-4-5 場發射掃描式電子顯微鏡 ( Field-Emission Scanning Electron Micro-scope, FE-SEM )................................................................. 52 第四章 P-type 電晶體實驗結果與分析.....................................................54 4-1 探討 PMMA 介電層退火溫度之影響..................................................55 4-2 以不同官能基自組裝單分子薄膜改質有機薄膜電晶體.....................58 4-2-1 不同官能基自組裝單分子薄膜之成長與分析................................ 58 4-2-2 主動層塗佈於成長不同官能基自組裝單分子薄膜之分析 ........... 61 4-2-3 不同官能基自組裝單分子薄膜對電晶體元件之特性分析 ........... 67 4-3 改變主動層高分子材料之分析............................................................72 第五章 結論與未來展望 .............................................................................80

1 W. Shockley, Bell Syst. Tech J. , 28, 435 (1949).

2 D. Kahng, M. M. Atalla, IRE Device Research Conference, Pittsburgh,

(1960).

3 M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys. , 38, 2024 (1963).

4 C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Hegger, H. Shirakawa, E.

J. Louis, S. C. Gua, A. G. MacDiarmid, Phys. Rev. Let. , 39, 1098

(1977).

5 A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. , 49, 1210 (1986).

6 C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. , 51, 913 (1987).

S. A. Dibenedetto, A. Facchetti, M. A. Ratner, T. J. Marks, Adv. Mater. ,

7

21, 10407, (2009).

8 T. D. Anthopoulos, D. M. de Leeuw, S. Setayesh, E. Cantatore, C.

Tanase, P. W. M. Blom, A. B. Holmes, Nature(London) 347, 539

(1990).

M. G. Kane., et al., Appl. Phys. Lett. , 80, No. 6, (2002).

9

10 J. Christopher Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M.

Whitesides, Chem. Rev. , 105, 1103 (2005).

11 A. Ulman, Academic Press, (1991).

12 A. Ulman, Chem. Rev. , 96, 1533, (1996).

13 S. Khodabakhsh, B. M. Sanderson, J. Nelson, Adv. Funct. Mater. , 16,

95, (2006).

14 J.S. Kim, J. H. Park, J. H. Lee, Applied Physics Letters, 91, 112111,

(2007).

15 S. Das, J. Joslin, Solar Energy Materials & Solar Cells, 124, 98,

(2014).

16 Y. T. Tao, K. Y. Wu, K. H. Huang, T. P. Perng, Organic Electronics, 12,

602, (2011).

17 M. Estrada, I. Mejia, A. Cerdeira, B. In ̃iguez, Solid-State Electronics,

52, 53, (2008).

18 H. Klauk, Organic Electronics, Wiley, (2006).

19 S. Obataz, Y. Shimoi, Phys. Chem. Chem. Phys. , 15, 9265, (2013).

20 I. Kymissis, C. D. Dimitrakopoulos, S. Purushothaman, IEEE

Trans.Electron. Dev. , 48, 1060, (2001).

21 C. Bock, D. V. Pham, U. Kunze, D. Kafer, G. Witte, C. Woll, J. Appl.

Phys. , 100, 114517, (2006).

22 B. Kumar, B. K. Kaushik, Y. S. Negi, Polymer Reviews, 54, 33, (2014).

23 D. F. Barbe, C. R. Westgate, J. Phys. Chem. Solids, 31, 2679 , (1970).

24 M. L. Petrova, L. D. Rozenshtein, Sov. Phys.-Solid State, 12 , 961,

(1970).

25 F. Ebisawa, T. Kurokawa, S. Nara, J. Apply. Phys. , 54, 3255, (1983).

26 C. D. Dimitrakopoulos, D. J. Mascaro, IBM J. RES. & DEV., 45, 11,

(2001).

27 Y. Taur, T. H. Ning, Cambridge Unerversity Press, New York, 11,

(1998).

28 Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J.

Chen, D. Nordlund, M. F. Toney, J. Huang, Z. Bao, NATURE

COMMUNICATIONS, 5, (2014).

29 R. Brown, C. P. Tarrett, D. M. de Leeuw, M. Matters, Synth. Met. , 88,

37, (1997).

30 P. G. Le Comber, W. E.Spear, Phys. Rev. Lett. , 25, 509, (1970).

31 G. Horowitz, P. Delannoy, J. Appl. Phys. , 70, 469, (1991).

32 G. Horowitz, R. Hajlaoui, P. Delannoy, J. Phys. III, 5, 355, (1995).

33 A. R. Brown, D. M. de Leeuw, E. E. Havinga, A. Pomp, Synth. Met. ,

68, 65, (1994).

34 M. C. J. M. Vssenberg, M. Matters, Phys. Rev. B, 57, 12964, (1998).

35 B.D. Cullity, S.R. Stock, Prentice Hall, New Jersey, (2001).

36 J. Park. H. Lee, M. Sci, Eng. C. , 24, 311, (2004).

37 J. F. Moulder, W. F. Stickle, P. E. Sobpl, K. D. Bomben, Physical

Electronics, (1995).

38 T. Jung, B. Yoo, L.Wang, A. Dodabalapur, Appl. Phys. Lett, 88,

183102, (2006).

39 H. Wang, J. Wang, X. Yan, J. Shi, H. Tian, Y. Geng, D. Yana, Appl.

Phys. Lett, 88, 133508, (2006).

40 H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, A. K.Y. Jen, Adv. Mater. 20,

2376, (2008).

41 M. Grunze, W. Eck, Springer-Verlag, 63, (2006).

42 D. H. Kim, Y. Jang, Y. D. Park, K. Cho, Langmuir, 21, 3203, (2005).

43 D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G.

Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu, K. Cho, Adv.

Funct. Mater. , 15, 77, (2005).

44 T. A. Chen, X. Wu, R. D. Rieke, J. Am. Chem. Soc. , 117, 233, (1995).

45 U. Zhokhavets, T. Erb, H. Hoppe, G. Gobsch, N. S. Sariciftci, Thin

Solid Films, 496, 679, (2006).

46 D. Chirvase, J. Parisi1, J. CHummelen, V. Dyakonov, Nanotechnology,

15, 1317, (2004).

47 吳怡潔,以直流濺鍍法沉積鉬薄膜於自組裝單分子膜修飾的玻璃基

板之研究,台灣科技大學,(2013).

48 黎尹芳,使用自組裝單分子薄膜修飾有機太陽能電池中氧化銦錫電

極與有機主動層界面之研究,台灣科技大學,(2009).

49 蔡仁傑,N 型有機薄膜電晶體之研究,成功大學,(2006).

50 許峻豪,軟性電子元件與噴墨技術之開發與應用,台灣大學,(2008).

QR CODE