簡易檢索 / 詳目顯示

研究生: 吳安妤
An-Yu Wu
論文名稱: 改質鋯金屬有機骨架應用於光催化降解四環黴素
Modified Zirconium-based Metal Organic Frameworks for Photocatalytic Tetracycline Degradation
指導教授: 胡哲嘉
Che-Chia Hu
葉旻鑫
Min-Hsin Yeh
口試委員: 胡哲嘉
邱昱誠
簡思佳
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 63
中文關鍵詞: 可見光鋯金屬有機框架非金屬摻雜共摻雜抗生素降解光觸媒
外文關鍵詞: Visible light, Zirconium Metal Organic Frames, Non-Metal Doping, Co-doping, Antibiotic degradation, Photocatalyst
相關次數: 點閱:115下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於人口迅速地增長,飲用水的需求增加,水資源的汙染成為社會關注的一項
    重要議題。近年來,隨著藥物、工業以及醫療行業等的快速發展,抗生素用量
    急速增加,使之成為造成水汙染的一項主要因素。而眾多抗生素之中,又因四
    環黴素(Tetracycline, TCs)有著高親水性和低揮發性的特點,導致其容易持續存
    在於水生環境中,造成嚴重的水污染問題,因此,處理水中四環黴素汙染物這
    項議題引起了大家的高度重視。
    本研究選用環保且低成本的光催化降解方法結合吸附方法,用於處理水中抗生
    素。有機金屬框架是近期最受矚目的觸媒,因其特殊結構以及極大的比表面
    積,它有著吸附能力極佳的特性。本研究選用水穩定性高的一種鋯基金屬有機
    框架-MOF-808 作為觸媒材料,然而這項材料的缺點是光吸收的波長範圍有限,
    在光催化中的應用稍受限制。有機金屬骨架由於其結構可調的特性,使得我們
    能透過改質的方式改善其缺陷。本研究選用非金屬摻雜的方式對 MOF-808 進行
    改質,並且選用了兩種摻雜物做比較,摻雜對胺基苯甲酸以及多巴胺黑色素膠
    體球並尋找摻雜的最佳比例,使之成為可有效吸收可見光源的優良光觸媒,應
    用於水中抗生素的降解。根據實驗結果以及儀器分析的鑑定,推斷出多巴胺黑
    色素膠體球以及對胺基苯甲酸分別是用來提高可見光吸收能力以及增強吸附能
    力。接著,我們以共摻雜的方式改質 MOF-808,將多巴胺黑色素膠體球以及對
    胺基苯甲酸共同摻雜入 MOF-808 中,並尋找最佳比例,成功結合了兩項摻雜物
    的優勢,並使光催化降解四環黴素之效率提升至 95 %。


    Due to the rapid population growth, the demand for drinking water has increased, and water resource pollution has become a major societal concern. In recent years, with the rapid development of the pharmaceutical, industrial, and medical sectors, the use of antibiotics has surged, making them a primary factor in water pollution. Among numerous antibiotics, tetracycline (TCs) is particularly problematic due to its high hydrophilicity and low volatility, which allow it to persist in aquatic environments and cause severe water pollution. Consequently, addressing tetracycline contaminants in water has garnered significant attention.
    This study explores the use of an environmentally friendly and low-cost photocatalytic degradation method combined with adsorption techniques to treat antibiotic contamination in water. Metal-organic frameworks (MOFs) have recently gained prominence as catalysts due to their unique structures and large surface areas, which confer excellent adsorption capabilities. In this research, MOF-808, a zirconium-based MOF with high water stability, was selected as the catalyst material. However, a limitation of MOF-808 is its restricted light absorption range, which somewhat limits its application in photocatalysis. Given the tunable nature of MOF structures, modifications can be made to overcome this limitation.
    This study employed non-metal doping to modify MOF-808, comparing two dopants: p-aminobenzoic acid and dopamine melanin colloidal spheres, to determine the optimal doping ratio for effective visible light absorption. According to experimental results and instrumental analysis, dopamine melanin colloidal spheres and p-aminobenzoic acid were identified as enhancing visible light absorption and adsorption capacity,
    respectively. Subsequently, a co-doping approach was used to modify MOF-808, incorporating both dopamine melanin colloidal spheres and p-aminobenzoic acid to find the optimal ratio. This approach successfully combined the advantages of both dopants, enhancing the photocatalytic degradation efficiency of tetracycline to 95%.

    摘要 ​I Abstract​ II 致謝​ III 目錄​ IV 圖目錄​ V 表目錄 ​VII 第一章 緒論 ​1 第二章 文獻回顧​ 3 2-1 水質中的汙染物​ 3 2-1-1 抗生素特性介紹​ 5 2-1-2 常見的四環黴素處理方法​ 6 2-2 光觸媒​ 9 2-3 有機金屬框架特性​ 12 2.3.1 鋯基金屬有機框架介紹 ​14 2.3.2 材料改質​ 15 第三章 實驗方法與檢測儀器 ​17 3.1 實驗藥品及儀器 ​17 3.1.1 實驗藥品 ​17 3.1.2 實驗儀器​ 18 3.2 實驗步驟 ​19 3.2.1 鋯金屬有機框架製備 ​19 3.2.2光催化降解四環黴素​ 20 3.2.3電化學分析實驗​ 21 3.3 儀器分析原理​ 22 第四章 結果與討論 ​26 4.1 晶相結構分析 ​26 4.2 化學結構分析 ​27 4.3 表面結構分析​ 29 4.4 光學性質分析​ 32 4.5 電化學性質分析​ 34 4.6 吸附實驗​ 37 4.7 光催化降解實驗​ 38 4.8 回收測試 ​42 第五章 結論​ 44 參考文獻​ 45 附錄​ 51

    [1] B. Moss, Water pollution by agriculture, Philosophical Transactions of the Royal
    Society B: Biological Sciences 363(1491) (2008) 659-666.
    [2] L. Lin, H. Yang, X. Xu, Effects of water pollution on human health and disease
    heterogeneity: a review, Frontiers in Environmental Science 10 (2022) 880246.
    [3] A.K. Dwivedi, Researches in water pollution: A review, International Research
    Journal of Natural and Applied Sciences 4(1) (2017) 118-142.
    [4] R. Gothwal, T. Shashidhar, Antibiotic pollution in the environment: a review, Clean–Soil, Air, Water 43(4) (2015) 479-489.
    [5] X. X. Zhang, T. Zhang, H.H. Fang, Antibiotic resistance genes in water
    environment, Applied microbiology and biotechnology 82 (2009) 397-414.
    [6] Y. Amangelsin, Y. Semenova, M. Dadar, M. Aljofan, G. Bjørklund, The impact of tetracycline pollution on the aquatic environment and removal strategies, Antibiotics
    12(3) (2023) 440.
    [7] M.-C. Danner, A. Robertson, V. Behrends, J. Reiss, Antibiotic pollution in surface fresh waters: Occurrence and effects, Science of the Total Environment 664 (2019) 793- 804.
    [8] K. Kulik, A. Lenart-Boroń, K. Wyrzykowska, Impact of antibiotic pollution on the bacterial population within surface water with special focus on mountain rivers, Water 15(5) (2023) 975.
    [9] R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment: a review,
    Environmental chemistry letters 11 (2013) 209-227.
    [10] L. Xu, H. Zhang, P. Xiong, Q. Zhu, C. Liao, G. Jiang, Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review, Science of the total Environment 753 (2021) 141975.
    [11] A. Caroni, C. De Lima, M. Pereira, J. Fonseca, The kinetics of adsorption of
    tetracycline on chitosan particles, Journal of Colloid and Interface Science 340(2)
    (2009) 182-191.
    [12] J. Wang, Q. Zhang, J. Liu, X. Ji, J. Ma, G. Tian, Preparation and excellent
    adsorption of water pollution dyes over magnetic Fe3O4/C nanoparticles with hollow grape cluster morphology, Journal of Nanoparticle Research 22 (2020) 1-11.
    [13] M. Ahmed, B. Hameed, E. Hummadi, Review on recent progress in /chitin-carbonaceous material composites for the adsorption of water
    pollutants, Carbohydrate Polymers 247 (2020) 116690.
    [14] X. Yang, Z. Chen, W. Zhao, C. Liu, X. Qian, M. Zhang, G. Wei, E. Khan, Y.H. Ng, Y.S. Ok, Recent advances in photodegradation of antibiotic residues in water, Chemical Engineering Journal 405 (2021) 126806.
    [15] D. Azanu, B. Styrishave, G. Darko, J.J. Weisser, R.C. Abaidoo, Occurrence and
    risk assessment of antibiotics in water and lettuce in Ghana, Science of the Total Environment 622 (2018) 293-305.
    [16] M. Asiltürk, Ş. Şener, TiO2-activated carbon photocatalysts: preparation,
    characterization and photocatalytic activities, Chemical Engineering Journal 180 (2012) 354-363.
    [17] H. Faghihian, A. Bahranifard, Application of TiO2-zeolite as photocatalyst for
    photodegradation of some organic pollutants, (2011).
    [18] G. Gopal, S.A. Alex, N. Chandrasekaran, A. Mukherjee, A review on tetracycline removal from aqueous systems by advanced treatment techniques, RSC advances
    10(45) (2020) 27081-27095.
    46
    [19] Y. Dai, M. Liu, J. Li, S. Yang, Y. Sun, Q. Sun, W. Wang, L. Lu, K. Zhang, J. Xu, A review on pollution situation and treatment methods of tetracycline in groundwater, Separation Science and Technology 55(5) (2020) 1005-1021.
    [20] K.J. Choi, S.G. Kim, S.H. Kim, Removal of tetracycline and sulfonamide classes
    of antibiotic compound by powdered activated carbon, Environmental Technology
    29(3) (2008) 333-342.
    [21] W. Xiang, Y. Wan, X. Zhang, Z. Tan, T. Xia, Y. Zheng, B. Gao, Adsorption of
    tetracycline hydrochloride onto ball-milled biochar: Governing factors and
    mechanisms, Chemosphere 255 (2020) 127057.
    [22] Z. Cetecioglu, B. Ince, S. Azman, O. Ince, Biodegradation of tetracycline under
    various conditions and effects on microbial community, Applied Biochemistry and
    Biotechnology 172 (2014) 631-640.
    [23] I.A. Saleh, N. Zouari, M.A. Al-Ghouti, Removal of pesticides from water and
    wastewater: Chemical, physical and biological treatment approaches, Environmental
    Technology & Innovation 19 (2020) 101026.
    [24] H. Liu, J. Qu, T. Zhang, M. Ren, Z. Zhang, F. Cheng, D. He, Y.-n. Zhang, Insights
    into degradation pathways and toxicity changes during electro-catalytic degradation of
    tetracycline hydrochloride, Environmental Pollution 258 (2020) 113702.
    [25] K. Rajkumar, M. Muthukumar, R. Mangalaraja, Electrochemical degradation of CI Reactive Orange 107 using Gadolinium (Gd 3+), Neodymium (Nd 3+) and Samarium (Sm 3+) doped cerium oxide nanoparticles, International Journal of Industrial Chemistry 6 (2015) 285-295.
    [26] Y. Chen, C. Hu, J. Qu, M. Yang, Photodegradation of tetracycline and formation
    of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation, Journal of Photochemistry and Photobiology A: Chemistry 197(1) (2008) 81-87.
    [27] C. Chen, W. Ma, J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chemical Society Reviews 39(11) (2010) 4206-4219.
    [28] Z. Long, Q. Li, T. Wei, G. Zhang, Z. Ren, Historical development and prospects
    of photocatalysts for pollutant removal in water, Journal of hazardous materials 395 (2020) 122599.
    [29] S. Liu, X.-r. Zhao, H.-y. Sun, R.-p. Li, Y.-f. Fang, Y.-p. Huang, The degradation of tetracycline in a photo-electro-Fenton system, Chemical Engineering Journal 231 (2013) 441-448.
    [30] N. Kannan, D. Vakeesan, Solar energy for future world:-A review, Renewable and Sustainable Energy Reviews 62 (2016) 1092-1105.
    [31] N. Yahya, F. Aziz, N. Jamaludin, M. Mutalib, A. Ismail, W. Salleh, J. Jaafar, N.Yusof, N. Ludin, A review of integrated photocatalyst adsorbents for wastewater
    treatment, Journal of Environmental Chemical Engineering 6(6) (2018) 7411-7425.
    [32] L. Chen, X. Zhang, X. Cheng, Z. Xie, Q. Kuang, L. Zheng, The function of metal– organic frameworks in the application of MOF-based composites, Nanoscale Advances
    2(7) (2020) 2628-2647.
    [33] Y. Liu, A.J. Howarth, N.A. Vermeulen, S.-Y. Moon, J.T. Hupp, O.K. Farha,
    Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks, Coordination Chemistry Reviews 346 (2017) 101-111.
    [34] K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide
    based photocatalyst in water treatment technology: a review, Water research 88 (2016) 428-448.
    [35] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Applied Surface Science 391 (2017) 72-123.
    [36] Y. Bu, Z. Chen, J. Yu, W. Li, A novel application of g-C3N4 thin film in
    photoelectrochemical anticorrosion, Electrochimica Acta 88 (2013) 294-300.
    [37] Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and
    removal of tetracycline antibiotics from aqueous solution by graphene oxide, Journal of Colloid and Interface Science 368(1) (2012) 540-546.
    [38] C. Prasad, Q. Liu, H. Tang, G. Yuvaraja, J. Long, A. Rammohan, G.V. Zyryanov, An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications, Journal of Molecular Liquids 297
    (2020) 111826.
    [39] W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang, L.C. Sim, An overview of
    photocatalytic degradation: photocatalysts, mechanisms, and development of
    photocatalytic membrane, Environmental Science and Pollution Research 27(3) (2020) 2522-2565.
    [40] R. Freund, O. Zaremba, G. Arnauts, R. Ameloot, G. Skorupskii, M. Dincă, A.
    Bavykina, J. Gascon, A. Ejsmont, J. Goscianska, The current status of MOF and COF applications, Angewandte Chemie International Edition 60(45) (2021) 23975-24001.
    [41] A. Abbasnia, A. Zarei, M. Yeganeh, H.R. Sobhi, M. Gholami, A. Esrafili, Removal
    of tetracycline antibiotics by adsorption and photocatalytic-degradation processes in
    aqueous solutions using metal organic frameworks (MOFs): A systematic review,
    Inorganic Chemistry Communications 145 (2022) 109959.
    [42] S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Stable metal–organic frameworks: design, synthesis, and applications, Advanced Materials 30(37) (2018) 1704303.
    [43] L. Chen, B. Zeng, N.A. Khan, X. Zhi, Y. Zhang, H. Xie, H. Zhu, Synergy in Nano- Fe3O4 and MOF-808 composites enriches their applications in sludge anaerobic fermentation, Chemical Engineering Journal (2024) 152471.
    [44] M. Samy, M.G. Ibrahim, M. Fujii, K.E. Diab, M. ElKady, M.G. Alalm,
    CNTs/MOF-808 painted plates for extended treatment of pharmaceutical and agrochemical wastewaters in a novel photocatalytic reactor, Chemical Engineering
    Journal 406 (2021) 127152.
    [45] H.G.T. Ly, G. Fu, A. Kondinski, B. Bueken, D. De Vos, T.N. Parac-Vogt,
    Superactivity of MOF-808 toward peptide bond hydrolysis, Journal of the American Chemical Society 140(20) (2018) 6325-6335.
    [46] T. Wu, F. Qiu, R. Xu, Q. Zhao, L. Guo, D. Chen, C. Li, X. Jiao, Dual-function
    detoxifying nanofabrics against nerve agent and blistering agent simulants, ACS Applied Materials & Interfaces 15(1) (2023) 1265-1275.
    [47] H.-B. Luo, A.J. Castro, M.C. Wasson, W. Flores, O.K. Farha, Y. Liu, Rapid,
    biomimetic degradation of a nerve agent simulant by incorporating imidazole bases into a metal–organic framework, ACS catalysis 11(3) (2021) 1424-1429.
    [48] M. Rahmani, A. Abbasi, M.-S. Hosseini, Enhancing the visible light absorption of
    MOF-808 by surface decoration with sulfur and nitrogen co-doped carbon quantum dots: Highly efficient photocatalyst for improved photocatalytic water remediation, Applied Surface Science 648 (2024) 159014.
    [49] J. Zhong, X. Yuan, J. Xiong, X. Wu, W. Lou, Solvent-dependent strategy to construct mesoporous Zr-based metal-organic frameworks for high-efficient adsorption
    of tetracycline, Environmental Research 226 (2023) 115633.
    [50] Y. Dong, X. Wang, H. Sun, H. Zhang, X. Zhao, L. Wang, Construction of a 0D/3D AgI/MOF-808 photocatalyst with a one-photon excitation pathway for enhancing the
    degradation of tetracycline hydrochloride: Mechanism, degradation pathway and DFT calculations, Chemical Engineering Journal 460 (2023) 141842.
    [51] M. Fu, X. Deng, S.-Q. Wang, F. Yang, L.-C. Lin, M.J. Zaworotko, Y. Dong,
    Scalable robust nano-porous Zr-based MOF adsorbent with high-capacity for
    sustainable water purification, Separation and Purification Technology 288 (2022) 120620.
    [52] Y. Wang, L. Lin, Y. Dong, X. Liu, Facile synthesis of MOF-808/AgI Z-scheme heterojunction with improved photocatalytic performance for the degradation of tetracycline hydrochloride under simulated sunlight, New Journal of Chemistry 46(34)
    (2022) 16584-16592.
    [53] F. Wang, R. Xue, Y. Ma, Y. Ge, Z. Wang, X. Qiao, P. Zhou, Study on the
    performance of a MOF-808-based photocatalyst prepared by a microwave-assisted method for the degradation of antibiotics, RSC advances 11(52) (2021) 32955-32964.
    [54] M.C. de Koning, C. Vieira Soares, M. van Grol, R.P. Bross, G. Maurin, Effective degradation of Novichok nerve agents by the zirconium metal–organic framework MOF-808, ACS Applied Materials & Interfaces 14(7) (2022) 9222-9230.
    [55] X. Hou, L. Jin, C. Wang, L. Gu, J. Li, L. Yang, Non-Noble Metal-Doped MOF-
    808-Zr Nanostructures with Abundant Defects for Toluene Oxidation, ACS Applied Nano Materials 6(19) (2023) 17397-17405.
    [56] C. Yue, L. Chen, H. Zhang, J. Huang, H. Jiang, H. Li, S. Yang, Metal–organic
    framework-based materials: emerging high-efficiency catalysts for the heterogeneous
    photocatalytic degradation of pollutants in water, Environmental Science: Water Research & Technology 9(3) (2023) 669-695.
    [57] A.M. Shultz, A.A. Sarjeant, O.K. Farha, J.T. Hupp, S.T. Nguyen, Post-synthesis modification of a metal–organic framework to form metallosalen-containing MOF materials, Journal of the American Chemical Society 133(34) (2011) 13252-13255.
    [58] J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al‐Ghamdi, Heterojunction
    photocatalysts, Advanced materials 29(20) (2017) 1601694.
    [59] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor
    heterojunction
    photocatalysts: design, construction, and photocatalytic performances,
    Chemical Society Reviews 43(15) (2014) 5234-5244.
    [60] X. Zhang, Y. Yang, W. Huang, Y. Yang, Y. Wang, C. He, N. Liu, M. Wu, L. Tang,
    g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation, Materials Research Bulletin 99 (2018) 349-358.
    [61] G. J. Lee, Y. W. Chien, S. Anandan, C. Lv, J. Dong, J.J. Wu, Fabrication of metal- doped BiOI/MOF composite photocatalysts with enhanced photocatalytic performance,
    International Journal of Hydrogen Energy 46(8) (2021) 5949-5962.
    [62] C. Fu, H. Zhou, L. Tan, Z. Huang, Q. Wu, X. Ren, J. Ren, X. Meng, Microwave-
    activated Mn-doped zirconium metal–organic framework nanocubes for highly effective combination of microwave dynamic and thermal therapies against cancer, Acs Nano 12(3) (2017) 2201-2210.
    [63] Y. Peng, Y. Bai, C. Liu, S. Cao, Q. Kong, H. Pang, Applications of metal–organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage, Coordination Chemistry Reviews 466 (2022) 214602.
    [64] Q. Ren, H. Wang, X.F. Lu, Y.X. Tong, G.R. Li, Recent progress on MOF‐derived heteroatom‐doped carbon based electrocatalysts for oxygen reduction reaction,
    Advanced Science 5(3) (2018) 1700515.
    [65] S. Guo, J. Li, Y. Wang, D. Sun, H. Ma, J. Hao, G. Wang, X. Zhang, Polydopamine-
    modified bimetallic metal organic frameworks (MOFs) for peroxymonosulfate
    activation to efficient degradation of tetracycline hydrochloride in wastewater, Colloids and Surfaces A: Physicochemical and Engineering Aspects 689 (2024) 133721.
    [66] N. Ahmad, A. Kausar, B. Muhammad, An investigation on 4-aminobenzoic acid
    modified polyvinyl chloride/graphene oxide and PVC/graphene oxide based
    nanocomposite membranes, Journal of Plastic Film & Sheeting 32(4) (2016) 419-448.
    [67] N. Ahmad, T. Mahmood, Preparation and properties of 4-aminobenzoic acid-
    modified polyvinyl chloride/titanium dioxide and PVC/TiO2 based nanocomposites
    membranes, Polymers and Polymer Composites 30 (2022) 09673911221099301.
    [68] T.K. Vo, K.S. Yoo, J. Kim, Enhanced CO2 adsorption performance on amino-defective UiO-66 with 4-amino benzoic acid as the defective linker, Separation and
    Purification Technology 274 (2021) 119079.
    [69] Z. Song, W. Liu, N. Cheng, M.N. Banis, X. Li, Q. Sun, B. Xiao, Y. Liu, A.
    Lushington, R. Li, Origin of the high oxygen reduction reaction of nitrogen and sulfur co-doped MOF-derived nanocarbon electrocatalysts, Materials Horizons 4(5) (2017)
    900-907.
    [70] H.-H. Mautschke, F. Drache, I. Senkovska, S. Kaskel, F.L. i Xamena, Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks,
    Catalysis Science & Technology 8(14) (2018) 3610-3616.
    [71] Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, L. Lu, Dopamine‐melanin colloidal
    nanospheres: an efficient near‐infrared photothermal therapeutic agent for in vivo
    cancer therapy, Advanced Materials 25(9) (2013) 1353-1359.
    [72] P. Jiang, L. Wang, J. Li, W. Liu, Z. Chen, T. Guo, Facile in-situ strategy for
    incorporating amphoteric dopamine into metal–organic framework with optimized degradation capacity of nerve agents simulant, Chemical Engineering Journal 448
    (2022) 137702.
    [73] F. Liu, W. Li, J. Yang, D. Ji, Y. Liang, H. Liang, X. Li, P. Han, Z. Yuan, J. He,
    MOF-808 on Polyacrylonitrile Nanofibers for Degradation of Chemical Warfare Agents, ACS Applied Nano Materials 6(19) (2023) 18437-18445.
    [74] C. Ardila-Suárez, J. Rodríguez-Pereira, V.G. Baldovino-Medrano, G.E. Ramírez- Caballero, An analysis of the effect of zirconium precursors of MOF-808 on its thermal
    stability, and structural and surface properties, CrystEngComm 21(9) (2019) 1407-1415.
    [75] A. Yao, X. Jiao, D. Chen, C. Li, Photothermally enhanced detoxification of
    chemical warfare agent simulants using bioinspired core–shell dopamine–melanin@ metal–organic frameworks and their fabrics, ACS applied materials & interfaces 11(8)
    (2019) 7927-7935.
    [76] S. Lin, Y. Zhao, J.K. Bediako, C.-W. Cho, A.K. Sarkar, C.-R. Lim, Y.-S. Yun,
    Structure-controlled recovery of palladium (II) from acidic aqueous solution using metal-organic frameworks of MOF-802, UiO-66 and MOF-808, Chemical Engineering
    Journal 362 (2019) 280-286.
    [77] Y. Gu, H. Luo, W. Xu, W. Zhou, Y. Sun, Fabrication of MOF-808 (Zr) with
    abundant defects by cleaving ZrO bond for oxidative desulfurization of fuel oil, Journal of Industrial and Engineering Chemistry 105 (2022) 435-445.
    [78] S. Rojas-Buzo, P. García-García, A. Corma, Zr-MOF-808@ MCM-41 catalyzed phosgene-free synthesis of polyurethane precursors, Catalysis Science & Technology
    9(1) (2019) 146-156.
    [79] F.M. Valadi, S. Shahsavari, E. Akbarzadeh, M.R. Gholami, Preparation of new MOF-808/chitosan composite for Cr (VI) adsorption from aqueous solution: Experimental and DFT study, Carbohydrate Polymers 288 (2022) 119383.
    [80] Z.-Z. Zhao, T. Wang, X. Zheng, Y. Ren, Z.-P. Zhao, MOF-808/Polyamide Thin-
    Film Nanocomposite Membranes for Efficient Nanofiltration, ACS Applied Nano Materials 6(19) (2023) 17615-17625.
    [81] Q. Fu, D. Liu, W. Niu, S. Zhang, R. Chen, Y. Wang, P. Zhao, H. Jiang, Y. Zhao, L.
    Yang, Defect-engineered MOF-808 with highly exposed Zr sites as highly efficient catalysts for catalytic transfer hydrogenation of furfural, Fuel 327 (2022) 125085.
    [82] J.M. Park, D.K. Yoo, S.H. Jhung, Selective CO2 adsorption over functionalized Zr-
    based metal organic framework under atmospheric or lower pressure: Contribution of
    functional groups to adsorption, Chemical Engineering Journal 402 (2020) 126254.
    [83] A. Khaleeq, S.R. Tariq, G.A. Chotana, Fabrication of samarium doped MOF-808
    as an efficient photocatalyst for the removal of the drug cefaclor from water, RSC
    Advances 14(15) (2024) 10736-10748.
    [84] R.B. Marcelino, C.C. Amorim, Towards visible-light photocatalysis for
    environmental applications: band-gap engineering versus photons absorption—a review, Environmental Science and Pollution Research 26 (2019) 4155-4170.
    [85] N. Kanmaz, P. Demirçivi, Adsorption of tetracycline using one-pot synthesis zirconium metal-organic framework (UiO-66) decorated hydroxyapatite, Journal of Molecular Liquids (2024) 124171.
    [86] B. Chen, Y. Li, M. Li, M. Cui, W. Xu, L. Li, Y. Sun, M. Wang, Y. Zhang, K. Chen,
    Rapid adsorption of tetracycline in aqueous solution by using MOF-525/graphene oxide composite, Microporous and Mesoporous Materials 328 (2021) 111457.
    [87] C. Gu, K. Karthikeyan, S.D. Sibley, J.A. Pedersen, Complexation of the antibiotic tetracycline with humic acid, Chemosphere 66(8) (2007) 1494-1501.
    [88] C. Hu, Z.-T. Liu, P.-C. Yang, Y.-X. Ding, K.-Y.A. Lin, B.-S. Nguyen, Self-
    assembly L-cysteine based 2D g-C3N4 nanoflakes for light-dependent degradation of rhodamine B and tetracycline through photocatalysis, Journal of the Taiwan Institute of
    Chemical Engineers 123 (2021) 219-227.
    [89] T.K. Vo, J. Kim, Facile synthesis of magnetic framework composite MgFe2O4@UiO-66 (Zr) and its applications in the adsorption–photocatalytic degradation of tetracycline, Environmental Science and Pollution Research 28(48) (2021) 68261-68275.
    [90] S. Ren, J. Dong, X. Duan, T. Cao, H. Yu, Y. Lu, D. Zhou, A novel (Zr/Ce) UiO-66(NH2)@ g-C3N4 Z-scheme heterojunction for boosted tetracycline photodegradation
    via effective electron transfer, Chemical Engineering Journal 460 (2023) 141884.

    無法下載圖示 全文公開日期 2034/08/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2122/08/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE