簡易檢索 / 詳目顯示

研究生: 蔡尚軒
SHANG-HSUAN TSAI
論文名稱: 電漿改質二硫化鉬薄膜觸媒應用於光催化還原二氧化碳
Plasma-engineered MoS2 thin film as photocatalyst for CO2 reduction
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 林麗瓊
Li-Chyong Chen
陳貴賢
Kuei-Hsien Chen
黃炳照
Bing-Joe Hwang
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 二硫化鉬薄膜電漿處理二氧化碳還原光觸媒光電子能譜
外文關鍵詞: MoS2, Plasma treatment, CO2 reduction, Photocatalyst, Photoelectron spectroscopy
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地表的二氧化碳濃度日益升高,對環境產生重大影響,若能有效將二氧化碳轉換成高價值之化學品,可產生正向循環。
    本論文成功以熱蒸鍍與化學氣相沉積法成長二硫化鉬薄膜於二氧化矽與氧化鋁基板上,再藉由氫氣與氮氣電在二硫化鉬的製程中,本研究可以良好控制二硫化鉬薄膜厚度,且在材料分析顯示,製備之二硫化鉬薄膜在可見光有良好之吸收,常壓下對於二氧化碳分子亦相當靈敏。
    在眾多的表面改質中,本研究選用不同載流氣體的低壓電漿進行表面處理,並利用光電子能譜進行材料分析。在氫氣的環境下,利用氫氣離子轟擊表面,可使表面產生硫空缺;而在氮氣的環境下,氮氣離子轟擊表面,氮原子可摻雜於觸媒表面作為受體,改變二硫化鉬之半導體特性,使其能階位置符合二氧化碳還原反應能階,以上兩種表面處理分別可提升約三倍的二氧化碳轉換效率。


    Global carbon emissions from fossil fuel raising decades, it cause climate change. If we can convert CO2 into chemicals and apply to industrial, it could become a virtuous cycle.
    We successfully fabricate the uniform molybdenum disulfide fully covered thin films on silicon dioxide and sapphire substrate. By using the thermal evaporation and chemical vapor deposition process, we can well control the thickness of MoS2. In material analysis, it shows good photoadsorption in visible light region, also have good photoresponse sensitivity to CO2 gas molecules.
    Furthermore, we introduce the hydrogen and nitrogen plasma treatment for our thin film. Both could enhance the activity of catalyst in CO2 reduction reaction around three times higher than pristine MoS2 thin film.
    From XPS result, hydrogen plasma treatment creates the sulfur vacancy on the thin film surface. In nitrogen plasma treatment, it shows nitrogen doping on the surface of the MoS2 thin films. By using the UPS and UV-Vis spectrum, we can identify the band structure. After nitrogen plasma treatment, it shows the band structure shift to lower potential and fit the reaction potential of CO2 reduction reaction, it’s due to the nitrogen on the surface acts as a p-type dopant in MoS2 thin film. It could become the mechanism of the enhancement in CO2 reduction reaction photocatalyst activity.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 第二章 實驗原理與文獻探討 6 2.1 光催化原理 6 2.2光催化還原二氧化碳 7 2.3 金屬氧化物光觸媒系統 10 2.4 金屬硫化物光觸媒系統 12 2.5光催化觸媒之摻雜 13 2.6 二硫化鉬介紹 15 2.6.1 背景 15 2.6.2 二硫化鉬組成與結構 16 2.6.3二硫化鉬應用於二氧化碳光催化還原 17 第三章 實驗方法與儀器介紹 22 3.1 實驗儀器 22 3.1.1 熱蒸鍍機(Thermal Evaporation Coater) 22 3.1.2 化學氣相沉積 (chemical vapor deposition) 23 3.1.3 感應耦合電漿 (RF Inductively Coupled Plasma) 24 3.2.1 拉曼光譜儀 (Raman Spectrometer) 26 3.2.2 紫外光-可見光光譜儀 (UV-Visible Spectrometer) 28 3.2.3 X光光電子能譜儀 (X-ray Photoelectron Spectroscopy) 29 3.2.5 紫外光光電子能譜儀 (UV Photoelectron Spectroscopy) 31 3.2.6 原子力顯微鏡(Atomic Force Microscope, AFM) 34 3.2.7 氣相管柱層析儀 (Gas Chromatography, GC) 35 3.3 實驗流程 37 3.3.1 基板清洗 37 3.3.2 熱蒸鍍薄膜沉積系統與製程 37 3.3.3 化學氣相沉積系統與製程 38 3.3.4 感應耦合電漿系統與製程 39 3.3.5 實驗流程簡圖 40 第四章 薄膜特性分析與討論 41 4.1 二氧化鉬薄膜鑑定與分析 41 4.1.1 原子力顯微鏡(AFM)表面分析 41 4.1.2 拉曼光譜分析 43 4.1.3 X光光電子能譜儀分析 45 4.1.4 紫外光-可見光光譜儀分析 47 4.1.5 環境變化功率相依光電導量測 49 4.2氫氣電漿處理薄膜鑑定與分析 54 4.2.1 氫氣電漿處理薄膜X光光電子能譜分析 54 4.2.2氫氣電漿處理薄膜二氧化碳還原產物分析 55 4.3氮氣電漿處理薄膜鑑定與分析 57 4.3.1 氮氣電漿處理薄膜X光光電子能譜分析 57 4.3.2 氮氣電漿處理薄膜紫外光-可見光光譜分析 60 4.3.3 氮氣電漿處理薄膜紫外光光電子能譜分析 60 4.3.4 氮氣電漿處理薄膜能階位置分析 61 4.3.5 氮氣電漿處理薄膜二氧化碳還原產物分析 62 第五章 結論 64 第六章 參考資料 65

    [1] G. Ciamician, “The Photochemistry of the Future,” Science, vol. 36, no. 926, pp. 385–394, Sep. 1912, doi: 10.1126/science.36.926.385.
    [2] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, Art. no. 5358, Jul. 1972, doi: 10.1038/238037a0.
    [3] J. Mao, Y. Wang, Z. Zheng, and D. Deng, “The rise of two-dimensional MoS2 for catalysis,” Front. Phys., vol. 13, no. 4, p. 138118, Jul. 2018, doi: 10.1007/s11467-018-0812-0.
    [4] D. Voiry, H. S. Shin, K. P. Loh, and M. Chhowalla, “Low-dimensional catalysts for hydrogen evolution and CO 2 reduction,” Nat. Rev. Chem., vol. 2, no. 1, Art. no. 1, Jan. 2018, doi: 10.1038/s41570-017-0105.
    [5] J. Fu, K. Jiang, X. Qiu, J. Yu, and M. Liu, “Product selectivity of photocatalytic CO2 reduction reactions,” Mater. Today, vol. 32, pp. 222–243, Jan. 2020, doi: 10.1016/j.mattod.2019.06.009.
    [6] X. Li, J. Wen, J. Low, Y. Fang, and J. Yu, “Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel,” Sci. China Mater., vol. 57, no. 1, pp. 70–100, Dec. 2014, doi: 10.1007/s40843-014-0003-1.
    [7] M. Dilla, A. Mateblowski, S. Ristig, and J. Strunk, “Photocatalytic CO2 Reduction under Continuous Flow High-Purity Conditions: Influence of Light Intensity and H2O Concentration,” ChemCatChem, vol. 9, no. 23, pp. 4345–4352, Dec. 2017, doi: 10.1002/cctc.201701189.
    [8] S. Xie, Y. Wang, Q. Zhang, W. Deng, and Y. Wang, “MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water,” ACS Catal., vol. 4, no. 10, pp. 3644–3653, Oct. 2014, doi: 10.1021/cs500648p.
    [9] L. Lu, B. Wang, S. Wang, Z. Shi, S. Yan, and Z. Zou, “La2O3-Modified LaTiO2N Photocatalyst with Spatially Separated Active Sites Achieving Enhanced CO2 Reduction,” Adv. Funct. Mater., vol. 27, no. 36, p. 1702447, 2017, doi: 10.1002/adfm.201702447.
    [10] W. Tu et al., “Construction of unique two-dimensional MoS2–TiO2 hybrid nanojunctions: MoS2 as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO2 to methanol,” Nanoscale, vol. 9, no. 26, pp. 9065–9070, Jul. 2017, doi: 10.1039/C7NR03238B.
    [11] S. Zhang, “Search on Self Organization Knowledge Distribution System and Its Operation Mechanism,” Int. J. Bus. Econ. Res., vol. 7, no. 5, Art. no. 5, Oct. 2018, doi: 10.11648/j.ijber.20180705.16.
    [12] A. Meng, L. Zhang, B. Cheng, and J. Yu, “TiO2–MnOx–Pt Hybrid Multiheterojunction Film Photocatalyst with Enhanced Photocatalytic CO2-Reduction Activity,” ACS Appl. Mater. Interfaces, vol. 11, no. 6, pp. 5581–5589, Feb. 2019, doi: 10.1021/acsami.8b02552.
    [13] P. Niu, Y. Yang, J. C. Yu, G. Liu, and H.-M. Cheng, “Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst,” Chem. Commun., vol. 50, no. 74, pp. 10837–10840, Aug. 2014, doi: 10.1039/C4CC03060E.
    [14] Y. Yang et al., “Transgenic Winter Wheat Expressing the Sucrose Transporter HvSUT1 from Barley does not Affect Aphid Performance,” Insects, vol. 10, no. 11, Art. no. 11, Nov. 2019, doi: 10.3390/insects10110388.
    [15] J. Jin and T. He, “Facile synthesis of Bi2S3 nanoribbons for photocatalytic reduction of CO2 into CH3OH,” Appl. Surf. Sci., vol. 394, pp. 364–370, Feb. 2017, doi: 10.1016/j.apsusc.2016.10.118.
    [16] Z. Zhu, J. Qin, M. Jiang, Z. Ding, and Y. Hou, “Enhanced selective photocatalytic CO2 reduction into CO over Ag/CdS nanocomposites under visible light,” Appl. Surf. Sci., vol. 391, pp. 572–579, Jan. 2017, doi: 10.1016/j.apsusc.2016.06.148.
    [17] B. AlOtaibi, S. Fan, D. Wang, J. Ye, and Z. Mi, “Wafer-Level Artificial Photosynthesis for CO2 Reduction into CH4 and CO Using GaN Nanowires,” ACS Catal., vol. 5, no. 9, pp. 5342–5348, Sep. 2015, doi: 10.1021/acscatal.5b00776.
    [18] S. Yu, A. J. Wilson, J. Heo, and P. K. Jain, “Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles,” Nano Lett., vol. 18, no. 4, pp. 2189–2194, Apr. 2018, doi: 10.1021/acs.nanolett.7b05410.
    [19] K. Liu et al., “Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2,” Nano Res., vol. 11, no. 6, pp. 2897–2908, Jun. 2018, doi: 10.1007/s12274-017-1943-2.
    [20] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, Art. no. 5358, Jul. 1972, doi: 10.1038/238037a0.
    [21] B. Kraeutler and A. J. Bard, “Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates,” J. Am. Chem. Soc., vol. 100, no. 13, pp. 4317–4318, Jun. 1978, doi: 10.1021/ja00481a059.
    [22] R. Wang et al., “Light-induced amphiphilic surfaces,” Nature, vol. 388, no. 6641, Art. no. 6641, Jul. 1997, doi: 10.1038/41233.
    [23] M. A. Henderson, “A surface science perspective on TiO photocatalysis,” Surf. Sci. Rep., vol. 66, pp. 185–297, Jun. 2011, doi: 10.1016/j.surfrep.2011.01.001.
    [24] 張華生, “調變銅錫硫三元化合物之硫含量應用於高效率可見光二氧化碳還原與轉換之研究,” thesis, 2017.
    [25] X. Yu, A. Shavel, X. An, Z. Luo, M. Ibáñez, and A. Cabot, “Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au Heterostructured Nanoparticles for Photocatalytic Water Splitting and Pollutant Degradation,” J. Am. Chem. Soc., vol. 136, no. 26, pp. 9236–9239, Jul. 2014, doi: 10.1021/ja502076b.
    [26] M. Zubair, A. Razzaq, C. A. Grimes, and S.-I. In, “Cu2ZnSnS4 (CZTS)-ZnO: A noble metal-free hybrid Z-scheme photocatalyst for enhanced solar-spectrum photocatalytic conversion of CO2 to CH4,” J. CO2 Util., vol. 20, pp. 301–311, Jul. 2017, doi: 10.1016/j.jcou.2017.05.021.
    [27] T. K and S. T, “Photocatalytic Reduction of Carbon Dioxide by Using Bare and Copper Oxide Impregnated Nano Titania Catalysts.,” J. Nanosci. Nanotechnol., vol. 17, no. 1, pp. 313–322, Jan. 2017, doi: 10.1166/jnn.2017.12421.
    [28] A. T. Montoya and E. G. Gillan, “Enhanced Photocatalytic Hydrogen Evolution from Transition-Metal Surface-Modified TiO2,” ACS Omega, vol. 3, no. 3, pp. 2947–2955, Mar. 2018, doi: 10.1021/acsomega.7b02021.
    [29] Y. Yang et al., “Efficient Charge Separation from F– Selective Etching and Doping of Anatase-TiO2{001} for Enhanced Photocatalytic Hydrogen Production,” ACS Appl. Mater. Interfaces, vol. 10, no. 23, pp. 19633–19638, Jun. 2018, doi: 10.1021/acsami.8b02804.
    [30] A. T. Montoya and E. G. Gillan, “Enhanced Photocatalytic Hydrogen Evolution from Transition-Metal Surface-Modified TiO2,” ACS Omega, vol. 3, no. 3, pp. 2947–2955, Mar. 2018, doi: 10.1021/acsomega.7b02021.
    [31] J. F. Guayaquil-Sosa, B. Serrano-Rosales, P. J. Valadés-Pelayo, and H. de Lasa, “Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt,” Appl. Catal. B Environ., vol. 211, pp. 337–348, Aug. 2017, doi: 10.1016/j.apcatb.2017.04.029.
    [32] O. Fontelles-Carceller, M. J. Muñoz-Batista, E. Rodríguez-Castellón, J. C. Conesa, M. Fernández-García, and A. Kubacka, “Measuring and interpreting quantum efficiency for hydrogen photo-production using Pt-titania catalysts,” J. Catal., vol. 347, pp. 157–169, Mar. 2017, doi: 10.1016/j.jcat.2017.01.012.
    [33] W. Ouyang, M. J. Muñoz-Batista, A. Kubacka, R. Luque, and M. Fernández-García, “Enhancing photocatalytic performance of TiO2 in H2 evolution via Ru co-catalyst deposition,” Appl. Catal. B Environ., vol. 238, pp. 434–443, Dec. 2018, doi: 10.1016/j.apcatb.2018.07.046.
    [34] R. A. Rather, S. Singh, and B. Pal, “A Cu+1/Cu0-TiO2 mesoporous nanocomposite exhibits improved H2 production from H2O under direct solar irradiation,” J. Catal., vol. 346, pp. 1–9, Feb. 2017, doi: 10.1016/j.jcat.2016.11.021.
    [35] G. Sadanandam, K. Lalitha, V. D. Kumari, M. V. Shankar, and M. Subrahmanyam, “Cobalt doped TiO2: A stable and efficient photocatalyst for continuous hydrogen production from glycerol: Water mixtures under solar light irradiation,” Int. J. Hydrog. Energy, vol. 38, no. 23, pp. 9655–9664, Aug. 2013, doi: 10.1016/j.ijhydene.2013.05.116.
    [36] F. Wu et al., “Photocatalytic Activity of Ag/TiO2 Nanotube Arrays Enhanced by Surface Plasmon Resonance and Application in Hydrogen Evolution by Water Splitting,” Plasmonics, vol. 8, no. 2, pp. 501–508, Jun. 2013, doi: 10.1007/s11468-012-9418-5.
    [37] R. Dholam, N. Patel, M. Adami, and A. Miotello, “Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst,” Int. J. Hydrog. Energy, vol. 34, no. 13, pp. 5337–5346, Jul. 2009, doi: 10.1016/j.ijhydene.2009.05.011.
    [38] V. Kumaravel, S. Mathew, J. Bartlett, and S. C. Pillai, “Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances,” Appl. Catal. B Environ., vol. 244, pp. 1021–1064, May 2019, doi: 10.1016/j.apcatb.2018.11.080.
    [39] X. Zhang, P. Song, and X. Cui, “Nitrogen-doped TiO2 Photocatalysts Synthesized from Titanium Nitride: Characterizations and Photocatalytic Hydrogen Evolution Performance,” J. Adv. Oxid. Technol., vol. 16, no. 1, pp. 131–136, Jan. 2013, doi: 10.1515/jaots-2013-0114.
    [40] Z. Xing, Z. Li, X. Wu, G. Wang, and W. Zhou, “In-situ S-doped porous anatase TiO2 nanopillars for high-efficient visible-light photocatalytic hydrogen evolution,” Int. J. Hydrog. Energy, vol. 41, no. 3, pp. 1535–1541, Jan. 2016, doi: 10.1016/j.ijhydene.2015.12.033.
    [41] K. S. Novoselov et al., “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, no. 5696, pp. 666–669, Oct. 2004, doi: 10.1126/science.1102896.
    [42] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol., vol. 6, no. 3, pp. 147–150, Mar. 2011, doi: 10.1038/nnano.2010.279.
    [43] Y.-C. Lin et al., “Direct synthesis of van der Waals solids,” ACS Nano, vol. 8, no. 4, pp. 3715–3723, Apr. 2014, doi: 10.1021/nn5003858.
    [44] S. Bertolazzi, D. Krasnozhon, and A. Kis, “Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures,” ACS Nano, vol. 7, no. 4, pp. 3246–3252, Apr. 2013, doi: 10.1021/nn3059136.
    [45] X. Li, J. Wen, J. Low, Y. Fang, and J. Yu, “Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel,” Sci. CHINA Mater., vol. 57, no. 1, pp. 70–100, Dec. 2014, doi: 10.1007/s40843-014-0003-1.
    [46] J. Albo, M. Alvarez-Guerra, P. Castaño, and A. Irabien, “Towards the electrochemical conversion of carbon dioxide into methanol,” Green Chem., vol. 17, no. 4, pp. 2304–2324, Apr. 2015, doi: 10.1039/C4GC02453B.
    [47] M. Remskar, Z. Skraba, R. Sanjinés, and F. Lévy, “MoS2 AND WS2 NANOTUBES ALLOYED WITH GOLD AND SILVER,” Surf. Rev. Lett., vol. 06, no. 06, pp. 1283–1287, Dec. 1999, doi: 10.1142/S0218625X9900144X.
    [48] J. Guo, F. Li, Y. Sun, X. Zhang, and L. Tang, “Oxygen-incorporated MoS2 ultrathin nanosheets grown on graphene for efficient electrochemical hydrogen evolution,” J. Power Sources, vol. 291, pp. 195–200, Sep. 2015, doi: 10.1016/j.jpowsour.2015.05.034.
    [49] W. Zhou et al., “MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction,” J. Mater. Chem. A, vol. 2, no. 29, pp. 11358–11364, Jul. 2014, doi: 10.1039/C4TA01898B.
    [50] S. Wi et al., “Enhancement of Photovoltaic Response in Multilayer MoS2 Induced by Plasma Doping,” ACS Nano, vol. 8, no. 5, pp. 5270–5281, May 2014, doi: 10.1021/nn5013429.
    [51] L. Tao, X. Duan, C. Wang, X. Duan, and S. Wang, “Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction,” Chem. Commun., vol. 51, no. 35, pp. 7470–7473, Apr. 2015, doi: 10.1039/C5CC01981H.
    [52] H. Li et al., “Lateral Growth of Composition Graded Atomic Layer MoS2(1–x)Se2x Nanosheets,” J. Am. Chem. Soc., vol. 137, no. 16, pp. 5284–5287, Apr. 2015, doi: 10.1021/jacs.5b01594.
    [53] W. Zhang et al., “CVD synthesis of Mo(1−x)WxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide,” Nanoscale, vol. 7, no. 32, pp. 13554–13560, Aug. 2015, doi: 10.1039/C5NR02515J.
    [54] L. Ye, S. Chen, W. Li, M. Pi, T. Wu, and D. Zhang, “Tuning the Electrical Transport Properties of Multilayered Molybdenum Disulfide Nanosheets by Intercalating Phosphorus,” J. Phys. Chem. C, vol. 119, no. 17, pp. 9560–9567, Apr. 2015, doi: 10.1021/jp5128018.
    [55] Y.-C. Lin et al., “Properties of Individual Dopant Atoms in Single-Layer MoS2: Atomic Structure, Migration, and Enhanced Reactivity,” Adv. Mater., vol. 26, no. 18, pp. 2857–2861, 2014, doi: 10.1002/adma.201304985.
    [56] U. Bhanu, M. R. Islam, L. Tetard, and S. I. Khondaker, “Photoluminescence quenching in gold - MoS 2 hybrid nanoflakes,” Sci. Rep., vol. 4, no. 1, Art. no. 1, Jul. 2014, doi: 10.1038/srep05575.
    [57] S. K. Behal, R. R. Chianelli, and B. H. Kear, “Edge plane segregation in cobalt-doped MoS2 crystals,” Mater. Lett., vol. 3, no. 9, pp. 381–384, Jul. 1985, doi: 10.1016/0167-577X(85)90082-5.
    [58] R. S. Title and M. W. Shafer, “Band Structure of the Layered Transition-Metal Dichalcogenides: An Experimental Study by Electron Paramagnetic Resonance on Nb-Doped Mo${\mathrm{S}}_{2}$,” Phys. Rev. Lett., vol. 28, no. 13, pp. 808–810, Mar. 1972, doi: 10.1103/PhysRevLett.28.808.
    [59] J. Suh et al., “Doping against the Native Propensity of MoS2: Degenerate Hole Doping by Cation Substitution,” Nano Lett., vol. 14, no. 12, pp. 6976–6982, Dec. 2014, doi: 10.1021/nl503251h.
    [60] B. V. Deryagin and D. V. Fedoseev, “Epitaxial Synthesis of Diamond in the Metastable Region,” Russ. Chem. Rev., vol. 39, no. 9, p. 783, 1970, doi: 10.1070/RC1970v039n09ABEH002022.
    [61] Glow Discharge Processes: Sputtering and Plasma Etching | Wiley. .
    [62] J. L. Vossen and W. Kern, Thin film processes II. Boston: Academic Press, 1991.
    [63] Principles of Plasma Discharges and Materials Processing, 1st ed. John Wiley & Sons, Ltd, 2005.
    [64] A. Azcatl et al., “Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure,” Nano Lett., vol. 16, no. 9, pp. 5437–5443, Sep. 2016, doi: 10.1021/acs.nanolett.6b01853.

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE