簡易檢索 / 詳目顯示

研究生: 陳柏翰
Po-Han Chen
論文名稱: 組成成分影響鹼激發無機聚合物 凝結時間與硬固性質之探討
Study on Influences of Constituents on Setting Time and Harden Properties of Alkali Activated Geopolymer
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 詹穎雯
Yin-Wen Chan
施正元
Jeng-Ywan Shih
陳君弢
Chun-Tao Chen
陳立憲
Li-Hsien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 146
中文關鍵詞: 鹼激發無機聚合物組成成分凝結時間長度變化
外文關鍵詞: Geopolymer, Constituents, Setting time, length change
相關次數: 點閱:273下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討三種液固比(0.45、0.5、0.55)、三種矽酸鈉溶液(水玻璃)模數(1.5、2.0、2.5)、三種比率硼砂(2.5%、5%、7.5%)、三種飛灰中CaO含量(3.37%、5%、10%)及四種不同SS/SH比例(0、0.5、1、1.5)等配比因子,對鹼激發無機聚合物漿體凝結時間與硬固性質之影響。
研究結果顯示:(1)矽酸鈉溶液模數為1.5、2、2.5時,無機聚合物漿體初凝時間依序為93.3、75.7、48分鐘;矽酸鈉溶液與氫氧化鈉溶液重量比為0、0.5、1及1.5時,無機聚合物漿體初凝時間依序為105、90、85及78分鐘,增加此兩種配比因子均會縮短凝結時間。(2)硼砂比率為2.5%、5%、7.5%時漿體初凝時間依序為149.3、291、382.3分鐘,具有明顯緩凝效果,平均每添加1%硼砂可延長 44.518%凝結時間;CaO含量為3.37%、5%、10%時,漿體初凝時間依序為74.5、59.9、25分鐘具有明顯速凝效果,平均每添加飛灰總重1%之CaO會使凝結時間加速10.73%。(3) 25天齡期鹼激發無機聚合物漿體長度變化量為-0.001%至-0.790%,以水玻璃模數對於漿體長度變化量影響最大,當液固比為0.45及水玻璃模數1.5與2.5之漿體長度變化量分別為膨脹0.0063%與收縮0.79%,差值可達到0.7963%。(4)齡期28天鹼激發無機聚合物抗壓強度範圍為21.51 MPa至102.78 MPa,水玻璃模數影響最大,當液固比為0.45及水玻璃模數為1.5與2.5時之漿體抗壓強度分別為21.51 MPa及78.04 MPa,相差達371%。


This study explored the effects of proportional factors of three liquid-solid ratios (0.45, 0.5, 0.55), three modula of sodium silicate solution (water glass) (1.5, 2.0, 2.5), three borax content (2.5%, 5%, 7.5%) and three CaO content in fly ash (3.37%, 5%, 10%) and four different SS/SH ratios (0, 0.5, 1, 1.5) on the setting time and hardening properties of alkali-activated geopolymer paste.
The research results show that: (1) When the modula of sodium silicate solution were 1.5, 2 and 2.5, the initial setting times of alkali-activated geopolymer paste were 93.3, 75.7 and 48 minutes in sequence; and became 105, 90, 85 and 78 minutes in sequence when the weight ratios of sodium silicate solution to sodium hydroxide solution were 0, 0.5, 1 and 1.5. Increasing these two proportioning factors will shorten the setting time. (2) When the borax ratios were 2.5%, 5% and 7.5%, the initial setting times of alkali-activated geopolymer paste were 149.3, 291 and 382.3 minutes in sequence to showapparenteffect, in which the average setting time can extend by 44.518%per 1% addition of borax; When the CaO contents were 3.37%, 5% and 10%, the initial setting time of alkali-activated geopolymer paste were 74.5, 59.9 and 25 minutes in sequence. The average setting time will be accelerated by 10.73% per 1% addition of CaO of total weight of fly ash. (3) The shrinkage of alkali-activated geopolymer laste at age of 25 days were -0.001% to -0.790%. The modulus of water glass has the greatest influence on the shrinkage. When the liquid-solid ratio was 0.45, the shrinkage of of paster with modula of water glass of 1.5 and 2.5 were 0.0063% in expansion and 0.79% in shrinkage, respectively, to have the difference by 0.7963%. (4) The compressive strengths of hardened alkali-activated geopolymer paste at age 28 days were between 21.51 MPa and 102.78 MPa, in which the grestedt influence belonged to the water glass modulus. When the liquid-solid ratio was 0.45 and the modula of water glass were 1.5 and 2.5, the compressive strength of were 21.51 MPa and 78.04 MPa, respectively, with a big difference of 371%.

摘要 i Abstract ii 致謝 iv 目錄 v 表目錄 vii 圖目錄 x 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 5 2.1 前言 5 2.2 鹼激發無機聚合物發展 5 2.3 鹼激發無機聚合物 6 2.3.1 可被用於鹼激發之原材料 6 2.3.2 飛灰簡介 6 2.3.3 高爐爐石粉簡介 6 2.3.4 水淬爐石粉物化性質 7 2.4 鹼激發反應機理 8 2.4.1 聚合反應機制 8 2.4.2 無機聚合物之水化產物 10 2.4.3 鈣元素角色 11 2.4.4 鋁元素角色 12 2.5 鹼激發無機聚合物因子 12 2.5.1 鹼性激發劑 12 2.5.2 鹼性激發劑濃度之影響 13 2.5.3 混合使用鹼溶液之影響 13 2.6 各材料因子對凝結時間之影響 14 第三章 試驗計畫 31 3.1 試驗內容與流程 31 3.2 試驗材料 32 3.3 試驗儀器設備 33 3.4 試驗變數與配比規劃 34 3.4.1 試驗變數與配比探討 34 3.4.2 配比編號說明 35 3.4.3 配比規劃 36 3.5 拌合流程 36 3.6 試驗方法 37 3.6.1 材料基本性質試驗 37 3.6.2 新拌性質試驗 39 3.6.3 微觀分析試驗 40 3.6.4 硬固性質試驗 41 第四章 試驗結果與討論 61 4.1 新拌性質 61 4.1.1 凝結時間 61 4.2 硬固性質 64 4.2.1 長度變化量 64 4.2.2 抗壓強度 68 4.2.3 掃描式電子顯微鏡 (SEM) 72 4.2.4 X光繞射分析(XRD) 72 第五章 結論與建議 115 5.1 結論 115 5.2 建議 118 參考資料 119

[1] 中聯資源提供 https://www.chc.com.tw/fp.html
[2] 吳宗翰,鹼激發爐灰砂漿鋼筋握裹性質研究,營建工程系碩士論文,國立臺灣科技大學,台北市,(2014)。
[3] 李祐帆,鹼激發爐石-轉爐石膠結材物理性質之研究,土木工程學系碩士論文,國立成功大學,台南市,(2010)。
[4] 官志恆,鹼活化液模數比及劑量對爐石混凝土性質影響之研究,河海工程系碩士論文,國立臺灣海洋大學,基隆市(2011)。
[5] 林育緯,不同鹼激發劑對爐石飛灰無機聚合物工程性質之影響,營建工程系碩士論文,國立臺灣科技大學,台北市(2012)。
[6] 邱友梅,無鹼激發廢玻璃膠結材之研究,土木工程學系碩士論文,國立成功大學,台南市(2012)。
[7] 邱顯楠,含偏高嶺土與稻殼灰鹼激發膠結材及砂漿之防火性能和工程性質探討,營建工程系碩士論文,國立臺灣科技大學,台北市(2012)。
[8] 涂明和,以氧化鈣與三氧化二鋁成份回歸分析探討鹼激發爐灰砂漿工程性質之影響,營建工程系碩士論文,國立臺灣科技大學,台北市(2015)。
[9] 翁子軒,氫氧化鈉和矽酸鈉溶液對爐石基無機聚合物工程性質之影響,營建工程系碩士論文,國立臺灣科技大學,台北市,(2018)。
[10] 張士晉,摻CFB副產石灰之鹼激發非灰膠凝材料工程性質之研究,土木工程學系碩士論文,國立成功大學,台南市,(2009)。
[11] 陳信安,無機聚合物技術應用於綠色水泥及綠色混凝土之研究,碩士論文,國立台北科技大學,台北 (2012)。
[12] 楊宗叡,鹼激發爐灰漿體微觀分析與工程性質研究,營建工程系碩士論文,國立臺灣科技大學,台北市,(2014)。
[13] 蔡宗和,含轉爐石及飛灰之鹼激發爐石膠結材,土木工程學系碩士碩士論文,國立成功大學,台南市,(2011)。
[14] 鄭百榕,爐石飛灰復合型無機聚合物於常溫及高溫環境之工程性質,營建工程系碩士論文,國立臺灣科技大學,台北市,(2013)。
[15] 盧偉峻,不同強度鹼激發膠結材料混凝土工程性質之探討,營建工程系碩士論文,國立臺灣科技大學,台北市,(2019)。
[16] A, Fernández-Jiménez. and A. Palomo., I. Sobrados. and J. Sanz., The role played by the reactive alumina content in the alkaline activation of fly ashes, Microporous and Mesoporous Materials, pp. 111-119 (2006).
[17] Barbosa, V. F. F., K. J. D. Mackensie and C. Thaumaturgo, Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers, International Journal of Inorganic Materials, vol. 2, no. 4, pp. 309-317 (2000).
[18] Chi, M., Effects of modulus ration and dosage of alkali-activated solution on the properties and micro-structural characteristics of alkali-activated fly ash mortars. Construction and Building Materials, (2015).
[19] Criado, M., A. Palomo and A. Fernandez-Jimenez, Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products, Fuel, 84 pp. 2048-2054 (2005).
[20] Davidovits, J., Chemistry of geopolymeric systems, Terminology Geopolymer99 Second International Conference Saint-Quentin, France (1999).
[21] Davidovits, J., Geopolymer chemestry and properties. In: Proceedings of 1988 geopolymere conference, vol. 1, p. 25–48 (1988).
[22] Diaz, E.I., E.N. Allouche and S.Eklund, Factors affecting the suitability of fly ash as source material for geopolymers, Fuel, Vol. 89, Issue 5, pp. 992-996 (2010).
[23] Dupuy, C., Metakaolin-based geopolymer: Formation of new phases influencing the setting time with the use of additives, Construction and Building Materials, Volume 200, pp. 272-281(2018).
[24] Esen, Y., The effect of cure conditions and temperature changes on the compressive strength of normal and fly ash-added concretes, Int. J. Phys. Sci. 5, pp. 2598-2604 (2010).
[25] Fernandez-Jimenez, A., A. Palomo and M. Criado, Microstructure development of alkali-activated fly ash cement: a descriptive model, Cement Concrete Res (2004).
[26] Fernando, P. T., C. G. Joao and S. Jalali, Alkali-activated binders: A review: Part 1. Historical background, terminology. Reaction mechanisms and hydration products, Construction and Building Materials, vol. 22, no. 7, pp. 1305-1314 (2008).
[27] García-Sánchez, M., J.A. Siles, Effect of digestate and fly ash applications on soil functional properties and microbial communities, Eur. J. Soil Biol., 71,pp. 1-12 (2015).
[28] Ghasan F. H. and K. W. Shah, “Durability and life cycle evaluation of self-compacting concrete containing fly ash as GBFS replacement with alkali activation” , Construction and Building Materials, Vol. 235 , (2020).
[29] Ghasan, F.H., Wei, S., Durability and life cycle evaluation of self-compacting concretecontaining fly ash as GBFS replacement with alkali activation, Construction and Building Materials,Vol.235, pp. 117458 (2020).
[30] Glukhovsky, V.D., High strength slag alkaline cements. In: Proceedings of the seventh international congress on the chemistry of cement, vol. 3, pp. 164–168 (1980).
[31] Glukhovsky, V.D., Soil silicates, Kiev:USSR:Gostroiizdat. (1959).
[32] Granizo, M. L., Activation alcalina de metacaolin: desarrolllo de nuevos materials cementantes, PhD thesis, University Autonoma of Madrid (1998).
[33] Jaarsveld, J.G.S., J.S.J. Deventer and G.C. Lukey, The effect of composition and temperature on the properties of fly ash and kaolinite based geopolymers, Chem Eng J, 89 (2002), pp. 63-73 (2002).
[34] Jaarsveld, J.G.S., J.S.J. Deventer, Factors affecting the immobilisation of metals in geopolymerised fly ash , etall Mater Trans B, 29B, pp. 283-291 (1998).
[35] Kiatsuda S. and C. Jaturapitakkul, NaOH-activated ground fly ash geopolymer cured at ambient temperature, Fuel, Vol. 90, No. 6, pp.2118-2124 (2011).
[36] Komnitsas, K., D. Zaharaki, and V. Perdikatsis. Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers. Journal of Hazardous Materials, pp. 760-768 (2009).
[37] Lecomte, I., M. Liegeois, A. Rulmont, R. Cloots and F. Maseri, Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag, Journal of Materials Research, vol. 18, no. 11, pp. 2571-2579 (2003).
[38] Lee, W.K.W., J.S.J. Deventer, The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements,Cement Concrete Res, 32 (2002), pp. 577-584 (2002).
[39] Muhammad N.S., Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability, Journal of Building Engineering, (2019).
[40] Muhammad, H., Z. Haiqiu and P. Shelley, Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability , Journal of Building Engineering, Vol. 16, pp. 301-313 (2019).
[41] Najif I. and H. El-Hassan, Development and Characterization of Fly Ash–Slag Blended Geopolymer Mortar and Lightweight Concrete, Journal of Materials in Civil Engineering, Vol. 30, No. 4 (2018).
[42] Palomo, A., M.W. Grutzek and M.T. Blanco, Alkali-activated fly ashes. A cement for the future, Cement Concrete Res, 29, pp. 1323-1329 (1999).
[43] Palomo, A., S. Alonso, A. Fernandez Jimenez, I. Sobrados and J. Sanz, Alkaline activation on fly ashes. A Si NMR study of the reaction products,J Am Ceram Soc, 87, pp. 1141-1145 (2004).
[44] Partha, S.D., N. Pradip. and S.K. Prabir. Drying shrinkage of slag blended fly ash geopolymer concrete cured at room temperature. Procedia Engineering, (2015).
[45] Peng Zhang, Kexun Wang, Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders - A review, Journal of Cleaner Production, Volume 258, 120896 (2020).
[46] Phair, J.W. and J.S.J. Van Deventer. Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers, International Journal of Mineral Processing, 66, pp.121-143, (2002).
[47] Pradip N. and P. Sarker, Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition , Construction and Building Materials, Vol. 66, pp. 163-171 (2014).
[48] Pradip, N., S. Kumar, Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition , Construction and Building Materials,Vol.66, pp. 163-171 (2014)
[49] Provis, J.L., J.S.J. Deventer, Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry,Chem Eng Sci, 62, pp. 2309-2317 (2007).
[50] Puertas, F., A. Fernández-Jiménez and M. T. Blanco-VarelaPore, Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate, Cement and Concrete Research, vol. 34, no. 1, pp. 139-148 (2004).
[51] Purdon, A.O., The action of alkalis on blast furnace slag, Journal of the Society of Chemical Industry, vol.59, no.9, pp.191-202 (1940).
[52] Sanjay K. and R. Kumar, Influence of Granulated Blast Furnace Slag on the Reaction, Structure and Properties of fly ash Based Geopolymer, Journal of Materials Science, Vol. 45, pp. 607-615 (2010).
[53] Sanjay, K., K. Rakesh and S.P. Mehrotra, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer,Journal of Materials Science,Vol.45, pp. 607-615 (2010).
[54] Shi, C. and R.L. Day, A calorimetric study of early hydration of alkali-slag cements. Cement and Concrete Research, pp.1333-1346 (1995).
[55] Shi, C. and R.L. Day, Some factors affecting early hydration of alkali-slag cements. Cement and Concrete Research, 26, pp.439-447 (1996).
[56] Silva, P. De, Kinetics of geopolymerization: role of Al2O3 and SiO2,Cement Concrete Res, pp. 512-518 (2007).
[57] Song, S., D. Sohn, H.M. Jennings. and T.O. Mason. , Hydration of alkali-activated ground granulated blast furnace slag. , J. Mater. Sci., (35) , pp. 249-257 (2000).
[58] Song, S., H.M. Jennings., Pore solution chemistry of alkali-activated ground granulated blast-furnace slag, Cement and Concrete Research (1999).
[59] Taylor, M., C. Tam, and D. Gielen, Energy efficiency and CO2 emissions from the global cement industry, International Energy Agency, IEA, Paris, (2006).
[60] Wang, S.D. and K.L. Scrivener., 29Si and 27Al NMR study of alkali-activated slag. Cement and Concrete Research, (2003).
[61] Wastiels, J., X, Wu., S. Faignet and G.Patfoort. Mineral polymer based on fly ash , Proceedings of the 9th International Conference on Solid Waste Management, Widener University Philadephia (1993).
[62] Xu, H., J.S.J.van Deventer and G.C.Lukey. Effect of Alkali Metals on the Preferential Geopolymerization of Stilbite/Kaolinite Mixtures. Industrial & Engineering Chemistry Research, 40 , pp.3749-3756, (2001).
[63] Yip, C. K., G. C. Lukey and J. L. Provis, Effect of calcium silicate sources on geopolymerisation, Cement and Concrete Research, vol. 38, no. 4, pp. 554-564 (2008).
[64] Yip, C.K., G.C. Lukey. and J.L. Provis. Effect of calcium silicate sources on geopolymerisation, Cement and Concrete Research (2008).
[65] Yip, C.K., G.C. Lukey. and J.S.J. van Deventer. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cement and Concrete Research (2005).

QR CODE