簡易檢索 / 詳目顯示

研究生: 鄒羽寅
Yu-Yin Tzou
論文名稱: 鉿的過渡金屬二硫化物半導體之晶體成長與特性研究
Crystal Growth and Characterization of HfSe2 and HfS2
指導教授: 何清華
Ching-Hwa Ho
口試委員: 何清華
Ching-Hwa Ho
李奎毅
Kuei-Yi Lee
周宏隆
Hung-Lung Chou
林俊良
Chun-Liang Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 168
中文關鍵詞: 化學氣相傳導法過渡金屬二硒化鉿二硫化鉿
外文關鍵詞: Chemical Vapor Transport, Transition Metal, Hafnium Diselenide, Hafnium Disulfide
相關次數: 點閱:276下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用化學氣相傳導法(Chemical Vapor Transport, CVT)成長過渡金屬二硫屬化物(Transition Metal Dichalcogenides, TMDCs)之二硒化鉿(Hafnium Diselenide, HfSe2)與二硫化鉿(Hafnium Disulfide, HfS2)晶體,並研究材料結構和光電特性。藉由 EDS、XPS、TEM 及 XRD 等儀器量測,確認成長之材料與預期相符,並得知 HfSe2 及 HfS2 皆為六方晶系。由拉曼光譜(Raman)觀察到 HfSe2 具有 Eg、A1g 及 "E" _"2g" ^"1" 三種振動模態,而 HfS2 具有 Eg、A1g 兩種振動模態,並進一步透過極化拉曼及溫度相依實驗觀察不同角度和溫度下,各振動模態的消長變化。光學量測中,利用穿透光譜(Transmittance)與熱調制反射光譜(Thermoreflectance)實驗量測到室溫(300 K)時 HfSe2 具有 1.244 eV能隙,HfS2 具有 2.019 eV能隙,皆為間接能隙,搭配溫度相依實驗可發現能量會隨溫度降低而增加,HfSe2 藍移至 1.315 eV,HfS2 則藍移至 2.065 eV。從電學量測中,透過兩點 V-I 曲線實驗結果得知 HfSe2 兩點電阻率為 8.695×10-2 Ω∙cm、HfS2 兩點電阻率為 5.622×10-1 Ω∙cm。利用熱探針(Hot Probe)及霍爾效應(Hall Effect)量測可知材料皆為 n 型半導體,且 HfSe2 載子濃度為 8.33×1018 cm-3,而 HfS2 載子濃度為 1.08×1018 cm-3。在變溫電阻率實驗中,HfSe2 呈現退化型半導體(Degenerate Semiconductor)行為,HfS2 則是低溫為半導體(Semiconductor)行為,高溫時為退化型半導體行為。最後進行兩材料之熱電量測,結果顯示皆具有高導電度及高 Seebeck 係數。
在拉曼實驗中發現易產生 HfOx 之峰值,因此將材料做變因控制氧化處理,由 EDS 實驗可得知 HfSe2 以及 HfS2 經加溫後逐漸變為 HfOx,在 XPS 實驗中可發現當 HfSe2 氧化後,價帶最高位置變為 0.0548 eV,HfS2 位置變為 0.579 eV。透過霍爾實驗量測,氧化後 HfSe2 濃度變為 1.62×1019 cm-3,電阻率下降變為 2.496×10-2 Ω∙cm,而 HfS2 濃度變為 5.00×1018 cm-3,電阻率亦下降變為 8.169×10-2 Ω∙cm。由上述實驗可以知道 HfSe2 相對於 HfS2 更容易形成 HfOx 化合物,故推測在相同氧化環境中,可發現 HfS2 氧化速率較慢,且導電率較新鮮面之材料更好。概括上述結果顯示兩材料皆具有低電阻率且高導電的特性,有利於開發相關熱電材料。


Chemical Vapor Transport (CVT) method was carried out to grow crystals of transition metal dichalcogenides (TMDCs), specifically Hafnium Diselenide (HfSe2) and Hafnium Disulfide (HfS2). The structure and optoelectronic properties were analyzed through Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD) measurement. HfSe2 and HfS2 had successfully grown, and determined that both HfSe2 and HfS2 possessed a hexagonal crystal structure. Raman spectroscopy revealed that HfSe2 exhibited three vibrational modes: Eg, A1g, and "E" _"2g" ^"1" , while HfS2 exhibited two vibrational modes: Eg and A1g. Further investigation through polarized Raman and temperature-dependent experiments provided insights into the variations of these vibrational modes under different angles and temperatures.
Transmittance and Thermoreflectance experiments determined the bandgap of HfSe2 and HfS2. HfSe2 exhibited an indirect bandgap of 1.244 eV, while HfS2 exhibited an indirect bandgap of 2.019 eV. Temperature-dependent measurements revealed an increase in energy as the temperature decreased to 20 K. HfSe2 was shifted to 1.315 eV, and HfS2 was shifted to 2.065 eV at 20 K. Both samples exhibit a blue-shift behavior and intensity ascent as temperature increased, satisfy the general behavior of semiconductor.
The electrical characterization was done through a two-point V-I curve, Hall-effect, hot probe, resistivity temperature dependent, and thermoelectric measurements. Two-point V-I curve experiments yielded a two-point resistivity of 8.695×10-2 Ω∙cm for HfSe2 and 5.622×10-1 Ω∙cm for HfS2. Hall effect and hot probe measurements indicated that both materials were n-type semiconductors. The carrier concentration for HfSe2 was determined to be 8.33×1018cm-3, while for HfS2, it was 1.08×1018cm-3. In the temperature-dependent resistivity experiments, HfSe2 exhibited degenerate semiconductor behavior, while HfS2 exhibited semiconductor behavior at low temperatures and degenerate semiconductor behavior at high temperatures. Furthermore, thermoelectric measurements of both materials showed high conductivity and Seebeck coefficients.
HfSe2 and HfS2 exhibited an oxidation behavior (HfOx) and were observed through some experiments. Raman measurement revealed that HfOx peaks were quickly generated. Therefore, controlled oxidation treatments were performed on the materials. The EDS experiments confirmed that HfSe2 and HfS2 gradually became HfOx upon heating. The XPS experiments demonstrated that the valence band maximum shifted to 0.0548 eV for oxidized HfSe2 and 0.579 eV for oxidized HfS2. The Hall effect measurements showed that the carrier concentration increased to 1.62×1019 cm-3 for oxidized HfSe2 and 5.00×1018 cm-3 for oxidized HfS2. Based on the above experiments, it was determined that HfSe2 was more prone to forming HfOx compounds than HfS2. Therefore, it can be inferred that HfS2 exhibits a slower oxidation rate than HfSe2 under the same oxidizing environment. Furthermore, the results indicate that the oxidized HfSe2 and HfS2 possess a high conductivity, making them promising for developing related thermoelectric materials.

摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 X 表目錄 XVII 第一章 緒論 1 第二章 晶體成長 6 2.1 化學氣相傳導法 6 2.2 晶體成長系統配置 9 2.2.1 真空系統 9 2.2.2 三區成長高溫爐 11 2.3 晶體成長流程 13 2.3.1 石英管清洗 13 2.3.2 元素材料比例秤重 14 2.3.3 封閉石英管 15 2.3.4 晶體化合及成長 15 第三章 實驗原理及量測技術 18 3.1 掃描式電子顯微鏡 19 3.2 能量色散 X 射線光譜 21 3.3 X 射線光電子能譜儀 23 3.4 X-ray 晶格繞射分析儀 25 3.5 場發射穿透式電子顯微鏡 28 3.6 原子力顯微鏡 31 3.7 拉曼散射光譜 33 3.8 光穿透光譜 37 3.9 熱調制光譜 40 3.10 熱探針量測 45 3.11 照光之電壓電流量測 47 3.12 四接點電阻率量測 49 3.13 霍爾效應 51 3.14 變溫電阻率量測 54 3.15 熱電量測 56 第四章 實驗結果與分析 60 4.1 能量色散 X 射線光譜分析 60 4.1.1 HfSe2 以及 HfS2 之 EDS 分析結果 61 4.2 X 射線光電子能譜分析 62 4.2.1 HfSe2 以及 HfS2 XPS 分析結果 62 4.3 X-ray 晶格繞射分析 68 4.3.1 HfSe2 以及 HfS2 之 XRD 分析結果 69 4.4 場發射穿透式電子顯微鏡影像分析 73 4.4.1 HfSe2 以及 HfS2 之 TEM 結果分析 73 4.5 AFM 厚度特性分析 76 4.5.1 HfSe2 以及 HfS2 之厚度分析結果 76 4.6 拉曼散射光譜分析 78 4.6.1 HfSe2 以及 HfS2 拉曼散射分析結果 78 4.6.2 HfSe2 以及 HfS2 溫度相依拉曼實驗 81 4.6.3 HfSe2 以及 HfS2 拉曼極化實驗 86 4.7 光穿透光譜分析 92 4.7.1 HfSe2 及 HfS2 光穿透分析結果 92 4.8 熱調制光譜分析 98 4.8.1 HfSe2 以及 HfS2 熱調制光譜分析結果 98 4.9 熱探針實驗結果分析 104 4.9.1 HfSe2 以及 HfS2 熱探針分析結果 104 4.10 照光之電壓電流量測結果分析 107 4.10.1 HfSe2 以及 HfS2 V-I 曲線分析結果 107 4.11 四接點電阻率量測結果 111 4.11.1 HfSe2 以及 HfS2 四接點電阻率量測結果 111 4.12 霍爾量測結果分析 113 4.12.1 HfSe2 以及 HfS2 霍爾量測分析結果 113 4.13 變溫電阻率量測結果分析 115 4.13.1 HfSe2 以及 HfS2 變溫電阻率分析結果 115 4.14 熱電量測結果分析 119 4.14.1 HfSe2 以及 HfS2 熱電分析結果 119 4.15 氧化 HfSe2 以及 HfS2 123 4.15.1 新鮮表面及氧化 HfSe2 與 HfS2 之 EDS 分析結果 125 4.15.2 表面新鮮與氧化 HfSe2 之 XPS 分析結果 128 4.15.3 表面新鮮與氧化 HfS2 之 XPS 分析結果 132 4.15.4 表面新鮮與氧化 HfSe2 與 HfS2 之拉曼散射分析結果 136 4.15.5 表面新鮮與氧化 HfSe2 與 HfS2 之霍爾量測結果分析 137 第五章 結論 138 參考文獻 141

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-9, 2004.
[2] Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene," Nature, vol. 438, no. 7065, pp. 201-4, 2005.
[3] P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, "Fast photoresponse from 1T tin diselenide atomic layers," Adv. Funct. Mater., vol. 26, no. 26, pp. 137-145, 2016.
[4] A. Gupta, T. Sakthivel, and S. Seal, "Recent development in 2D materials beyond graphene," Prog. Mater. Sci., vol. 73, pp. 44-126, 2015.
[5]A. K. Geim, "Graphene: status and prospects," science, vol. 324, no. 5934, pp. 1530-1534, 2009.
[6] Q. H. Wang, K. Z. Kourosh, A. D. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., vol. 7, no. 11, pp. 699-712, 2012.
[7] T. C. Niu, and A. Li, "From two-dimensional materials to heterostructures," Science, vol. 90, pp. 21-45, 2015.
[8] T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka, and Y. Miyamoto, "Few-layer HfS2 transistors," Sci. Rep., vol. 6, no. 1, pp 22277, 2016.
[9] J. Ye, K. Liao, X. Ge, Z. Wang, Y. Wang, M. Peng, T. He, P. Wu, H. L. Wang, Y. F. Chen, Z. Z. Cui, Y. Gu, H. Y. Xu, T. F. Xu, Q. Li, X. H. Zhou, M. Luo, N. Li, M. Zubair, F. Wu, P. Wang, C. X. Shan, G. Wang, J. S Miao, and W. D. Hu, "Narrowing bandgap of HfS2 by Te substitution for short‐wavelength infrared photodetection," Adv. Opt. Mater., vol. 9, no. 11, pp. 2002248, 2021.
[10] Z.Yang, C. Kim, K. Y. Lee, M. Lee, S. Appalakondaiah, C. H. Ra, K. Watanabe, T. Taniguchi, K. Cho, E. Hwang, J. Hone, and W. J. Yoo, "A Fermi-level-pinning-free 1D electrical contact at the intrinsic 2D MoS2 metal junction," Adv. Mater., vol. 31, no. 25, pp. 1808231, 2019.
[11] M. Traving, T. Seydel, L. Kipp, M. Skibowski, F. Starrost, E. E. Krasovskii, A. Perlov, and W. Schattke, "Combined photoemission and inverse photoemission study of HfS2," Phys. Rev. B, vol. 63, no. 3, pp. 35107, 2001.
[12] X. T. Zhang, B. Liu, S. Liu, J. Y. Li, R. Liu, P. Wang, Q. Dong, S. J. Li, H. Tian, Q. J Li, and B. B. Liu, "Semiconductor-to-metal transition in HfSe2 under high pressure," J. Alloy. Compd., vol. 867, pp. 158923, 2021.
[13] J. Y. Chen, "Phonons in bulk and monolayer HfS2 and possibility of phonon-mediated superconductivity: a first-principles study," Solid State Commun., vol. 237, pp. 14-18, 2016.
[14] Q. Yao, L. Zhang, P. Bampoulis, and H. J. Zandvliet, "Nanoscale investigation of defects and oxidation of HfSe2," Phys. Chem. Res., vol. 122, no. 44, pp. 25498-25505, 2018.
[15] X. Wang, Y. Gong, G. Shi, W. L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B. K. Tay, and P. M. Ajayan, "Chemical vapor deposition growth of crystalline monolayer MoSe2," ACS Nano, vol. 8, no. 5, pp. 5125-5131, 2014.
[16] D. Hu, G. C. Xu, L. Xing, X. Yan, J.Y. Wang, J. Y. Zheng, P. Wang, and L. Jiao, "Two-dimensional semiconductors grown by chemical vapor transport," Angew. Chem.-Int. Edit., vol. 56, no. 13, pp.3611-3615, 2017.
[17] S. Mangelsen, and W. Bensch, "HfTe2:Enhancing magnetoresistance properties by improvement of the crystal growth method," Inorg. Chem., vol. 59, no. 2, pp. 1117-1124, 2019.
[18] H. Schäfer, "Chemical transport reactions," Academic Press., United States, New York, 1964.
[19] H. Seiler, "Secondary electron emission in the scanning electron microscope," J. Appl. Phys., vol. 54, no. 11, pp. R1-R18, 1983.
[20] G. Lawes, "Scanning electron microscopy and X-ray microanalysis," Springer, United States, 1987.
[21] J. F. Watts, and J. Wolstenholme, "An introduction to surface analysis by XPS and AES," John Wiley & Sons Inc., United States, New York, 2003.
[22] X. Zhu, R. Birringer, U. Herr, and H. Gleiter, "X-ray diffraction studies of the structure of nanometer-sized crystalline materials," Phys. Rev. B, vol. 35, no. 17, pp. 9085, 1987.
[23] C. Kittel, "Introduction to solid state physics," John Wiley & Sons Inc., United States, New York, 1996.
[24] R. F. Egerton, "Physical principles of electron microscopy," Springer, United States, New York, 2005.
[25] S. N. Magonov, and M. H. Whangbo, "Surface analysis with STM and AFM," VCH, Germany, Weinheim, 1996.
[26] P. Graves, and D. Gardiner, "Practical raman spectroscopy," Springer, United States, New York, 1989.
[27] S. Perkowitz, "Optical characterization of semiconductors:infrared, Raman, and photoluminescence spectroscopy," Academic Press., United States, San Diego, 1993.
[28] H. W. Verleur, "Determination of optical constants from reflectance or transmittance measurements on bulk crystals or thin films," J. Opt. Soc. Am., vol. 58, no. 10, pp. 1356-1364, 1968.
[29] B. Seraphin, R. Hess, and N. Bottka, "Field effect of the reflectivity in germanium," J. Appl. Phys., vol. 36, no. 7, pp. 2242-2250, 1965.
[30] F. H. Pollak, and H. Shen, "Modulation spectroscopy of semiconductors:bulk/thin film, microstructures, surfaces/interfaces and devices," Mater. Sci. Eng. R: Rep., vol. 10, no. 7-8, pp. xv-374, 1993.
[31] C. H. Ho, H. W. Lee, and Z. H. Cheng, "Practical thermoreflectance design for optical characterization of layer semiconductors," Rev. Sci. Instrum., vol. 75, no. 4, pp. 1098-1102, 2004.
[32] A. Axelevitch, and G. Golan, "Hot-probe method for evaluation of majority charged carriers concentration in semiconductor thin films," Facta. Univ.-Ser. Electron. Energ., vol. 26, no. 3, pp. 187-195, 2013.
[33] J. P. Colinge, and C. A. Colinge, "Physics of semiconductor devices," Springer Science & Business Media, United Kingdom, London, 2005.
[34] L. J. van der Pauw, "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape," Philips Res. Rep., vol. 13, no. 1, pp. 1-9, 1958.
[35] O. Philips’ Gloeilampenfabrieken, "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape," Philips Res. Rep., vol. 13, no. 1, pp. 1-9, 1958.
[36] D. K. Schroder, "Semiconductor material and device characterization," John Wiley & Sons Inc., United States, New York, 1990.
[37] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, "Observation of the spin Seebeck effect," Nature, vol. 455, no. 7214, pp. 778-781, 2008.
[38] T. C. Harman, J. H. Cahn, and M. J. Logan, "Measurement of thermal conductivity by utilization of the Peltier effect," J. Appl. Phys., vol. 30, no. 9, pp. 1351-1359, 1959.
[39] W. H. Chen, C. Y. Liao, and C. I. Hung, "A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect," Appl. Energy, vol. 89, no. 1, pp. 464-473, 2012.
[40] 倪祥圃,「熱電優值 ZT 量測方法之研究與實作」,國立臺灣大學機械工程學研究所學位論文,pp. 1-75, 2016。
[41] M. Kang, S. Rathi, I. Lee, L. Li, M. A. Khan, D. Lim, Y. Lee, J. Park, S. J. Yun, D. H. Youn, C. Junb, and G. H. Kim, "Tunable electrical properties of multilayer HfSe2 field effect transistors by oxygen plasma treatment," Nanoscale, vol. 9, no. 4, pp. 1645-1652, 2017.
[42] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, "Handbook of X-ray photoelectron spectroscopy," Perkin-Elmer Corporation, United States, Minnesota, 1992.
[43] D. Y. Lin, Y. T. Shih, W. C. Tseng, C. F. Lin, and H. Z. Chen, "Influence of Mn, Fe, Co, and Cu doping on the photoelectric properties of 1T HfS2 crystals," Materials, vol. 15, no. 1, pp. 173, 2021.
[44] D. Wang, X. Zhang, G. Guo, S. Gao, X. Li, J. Meng, Z. Yin, H. Liu, M. Gao, L. Cheng, J. You, and R. Wang, "Large-area synthesis of layered HfS2(1−x)Se2x alloys with-fully tunable chemical compositions and bandgaps," Adv. Mater., vol. 30, no. 44, pp. 1803285, 2018.
[45] D. Wang, X. Zhang, H. Liu, J. Meng, J. Xia, Z. Yin, Y. Wang, J. You, and X. M. Meng, "Epitaxial growth of HfS2 on sapphire by chemical vapor deposition and application for photodetectors," 2D Mater., vol. 4, no. 3, pp. 031012, 2017.
[46] G. Li, W. Du, S. Sun, Q. Lu, Z. Chen, H. Liu, Y. Ma, X. Sun, Y. Jia, and F. Chen, "2D layered MSe2 (M = Hf, Ti and Zr) for compact lasers: nonlinear optical properties and GHz lasing," Nanophotonics, vol 11, no. 14, pp.3383-3394, 2022.
[47] G. Ding, G. Y. Gao1, Z. Huang, W. Zhang, and K. Yao, "Thermoelectric properties of monolayer MSe2 (M=Zr, Hf):low lattice thermal conductivity and a promising figure of merit," Nanotechnology, vol. 27, no. 37, pp. 375703, 2016.
[48] M. Albagami, A. Alrasheed, M. Alharbi, A. Alhazmi, K. Wong, H. Qasem, S. Alodan, O. Alolaiyan, K. L. Wang, and M. R. Amer, "Anomalous conductivity switch observed in treated hafnium diselenide transistors," Adv. Electron. Mater., vol. 6, no. 5, pp. 1901246, 2020.
[49] I. Antoniazzi, N. Zawadzka, M. Grzeszczyk, T. Woźniak, J. Ibáñez, Z. Muhammad, W. Zhao, M. R. Molas, and A. Babiński, "The effect of temperature and excitation energy on Raman scattering in bulk HfS2," J. Phys.-Condes. Matter., vol. 35, no. 30, pp. 305401, 2023.

無法下載圖示 全文公開日期 2028/08/26 (校內網路)
全文公開日期 2028/08/26 (校外網路)
全文公開日期 2028/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE