簡易檢索 / 詳目顯示

研究生: 董勁宏
Jing-Hong Dong
論文名稱: 在IEEE 802.15.4下智慧電網中家庭區域網路之控制訊號服務品質分析與研究
Study on Quality of Service for Control Signal of Smart Grid in IEEE 802.15.4 Home Area Networks
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 陳俊良
Jiann-Liang Chen
鍾添曜
Tein-Yaw Chung
吳傳嘉
Chwan-Chia Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 99
中文關鍵詞: IEEE 802.15.4WSNZigBee服務品質家庭區域網路智慧電網
外文關鍵詞: HAN, IEEE 802.15.4, QoS, Smart Grid, WSN, ZigBee
相關次數: 點閱:276下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電力基礎建設攸關國家經濟、社會發展與民眾生活便利,因此,各國政府皆積極投入規劃與研究電力系統相關的革新,而其中被視為未來電力系統主流發展趨勢者即為智慧電網 (Smart Grid)。然而,為達成能源使用效率之監測及控制以達到節省能源之目的,無線感測網路 (Wireless Sensor Network; WSN)扮演了非常重要的角色。
    無線感測網路是由複數個感測節點彼此經由無線傳輸的方式來溝通所形成的網路系統,由於是無線傳輸,所以比起有線網路來說,不需要考量額外的佈線成本。再者,無線感測網路具有低速、低耗電、低成本、支援大量網路節點的特性,這些特性恰好與智慧電網中家庭區域網路的硬體需求相符合。在通訊協定方面,IEEE802.15.4標準定義了無線感測網路實體層與媒體存取控制副層的運作,更使得智慧電網的通訊協定有明確規範可以使用。
    在智慧電網的家庭區域網路中,智慧電表與智慧裝置彼此之間會互相傳遞訊息以交換各電器的用電情形、用電價目表以及開/關控制等資訊,為了使控制訊號及資料能夠及時到達目的端,智慧電網標準規範了其通訊系統中的訊號類型與服務品質要求,其中最重要的是各類型訊號的最大延遲時間,這是因為若訊號無法在標準所訂定的延遲時間內送達的話,其可能造成財產損失及人員的傷亡。然而IEEE 802.15.4標準中並沒有對傳輸服務品質 (Quality of Service; QoS)進行規範以至於無法滿足智慧電網中對通訊系統服務品質的要求。
    因此,本論文將針對智慧電網家庭區域網路中的控制訊號及資料,提出一個新智慧電網訊號傳輸機制 (A Novel Signal Transmission Mechanism for HAN Smart Grid; NSTHS)。此傳輸機制是以智慧裝置與智慧電表所建構的星狀拓樸網路為基礎,輔以訊號優先等級分類,在滿足各類型訊號的最大可容忍的延遲時間前提下,將訊號即時傳送到目的端。為了確保此傳輸機制能滿足智慧電網的通訊服務品質要求,我們以產能、有效產能、平均傳輸延遲以及平均訊框丟棄率等項目來評估我們的系統效能。
    模擬結果顯示本論文所提出的NSTHS機制不僅能夠將家庭區域網路間傳輸的電網訊號依照IEEE 2030標準所定義的訊號類別進行分類另外還能利用NSTHS機制來傳輸電網訊號,並符合IEEE 2030標準所訂定的延遲時間。


    There has no change in the basic structure of the electrical power grid for 100 years. As time goes on, the demand for electricity has gradually increased. However, the convergence of electrical power control system, which is hierarchical and centrally controlled, is not suitable and lack of automated analysis, slow response times, poor visibility, lack of situational awareness, etc.
    For the sake of solving these problems, a new concept of next generation electric power system, the Smart Grid, has emerged. The Smart Grid can be considered as a modern electric power grid infrastructure combining with information and communication technologies.
    Based on the different communication scales, the Smart Grid communication network can be divided into three parts: HAN (Home Area Network), FAN (Field Area Network), and WAN (Wide Area Network). ZigBee is one of the wireless technologies can be implemented in the HAN. However, the IEEE 802.15.4 standard do not defined the QoS (Quality of Service) application, so it can’t sustain the transmission delay suggested in IEEE 2030 standard.
    In this thesis, we propose NSTHS (A Novel Signal Transmission Mechanism for HAN Smart Grid) to add the QoS to provide different service for differently classified traffic of the Smart Grid. In addition, we use the NSTHS to transmit signal of the star topology HAN Smart Grid. Our simulation results show that the proposed mechanism can improve the delay, throughput, goodput, and drop ratio of low delay tolerance traffic, accordingly ensure the latency, reliability, and performance for monitoring and control data of a HAN Smart Grid system.

    摘要 iii Abstract v 誌謝 vi 圖目次 ix 表目次 xii 第一章 緒論 1 1.1 簡介 1 1.2 研究動機與目的 4 1.3 章節摘要 6 第二章 智慧電網與IEEE 802.15.4之探討 7 2.1 智慧電網簡介 7 2.1.1 先進讀表基礎建設 (advanced metering infrastructure; AMI) 8 2.2 ZigBee/IEEE 802.15.4標準簡介 11 2.2.1 IEEE 802.15.4標準之裝置類別 13 2.2.2 IEEE 802.15.4標準之網路拓樸結構 13 2.2.3 實體層 (physical layer) 14 2.2.4 媒體存取控制副層介紹 (medium access control sublayer) 17 2.2.5 超碼框結構 (superframe structure) 18 2.2.6 載波偵測多重存取/碰撞避免機制 (CSMA/CA) 20 2.2.7 資料傳輸模型 (data transfer model) 22 2.2.8 訊框格式(frame format) 27 2.3 相關研究 33 第三章 NSTHS傳輸機制介紹 35 3.1 系統基本架構 36 3.2 協調者之流程 40 3.3 裝置之流程 43 3.4 數學分析 46 3.4.1 裝置上傳資料訊框至協調者之延遲時間探討 47 3.4.2 協調者下傳資料訊框至裝置之延遲時間探討 48 第四章 系統模擬與結果 51 4.1 模擬環境及參數設定 51 4.2 效能評估項目 56 4.2.1 產能 (throughput) 56 4.2.2 有效產能 (goodput) 57 4.2.3 平均訊框丟棄率 (average frame drop ratio) 57 4.2.4 平均傳輸延遲 (average delay per frame) 58 4.3 模擬結果分析與比較 58 4.3.1 產能 (throughput)的分析 59 4.3.2 有效產能 (goodput)的分析 64 4.3.3 平均訊框丟棄率 (average frame drop ratio)的分析 69 4.3.4 平均傳輸延遲 (average delay per frame) 74 第五章 結論及未來研究 81 參考文獻 82

    [ 1 ] V.C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, G.P. Hancke, “Smart Grid Technologies: Communication Technologies and Standards,” IEEE Transactions on Industrial Informatics, vol.7, issue 4, pp.529-539, Nov. 2011。
    [ 2 ] H. Farhangi, “The path of the smart grid,” IEEE Power and Energy Magazine, vol.8, issue 1, pp.18-28, January-February 2010.
    [ 3 ] M. Erol-Kantarci and H. T. Mouftah, “Wireless Sensor Networks for Cost-Efficient Residential Energy Management in the Smart Grid,”, IEEE Transactions on Smart Grid, vol.2, issue 2, pp.314-325, June 2011.
    [ 4 ] M. Erol-Kantarci and H. T. Mouftah, “Using wireless sensor networks for energy-aware homes in smart grids,” 2010 IEEE Symposium on Computers and Communications (ISCC), pp.456-458, 22-25 June 2010.
    [ 5 ] J. Li, J. Y. Chung, J. Xiao, J.W. Hong and R. Boutaba, “On the design and implementation of a home energy management system,” 2011 6th International Symposium on Wireless and Pervasive Computing (ISWPC), pp.1-6, 23-25 Feb. 2011.
    [ 6 ] IEEE 802 Working Group, “IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), pp.1-314, Sept. 5 2011.
    [ 7 ] IEEE 802 Working Group, “Standard for Part 15.4: Wireless Medium Access Control(MAC) and Physical(PHY) Specifications for Low Rate Wireless Personal Area Networks(LR-WPANs),” ANSI/IEEE 802.15.4, Sept. 2006.
    [ 8 ] G. Lu, B. Krishnamachari and C.S. Raghavendra, “Performance evaluation of the IEEE 802.15.4 MAC for low-rate low-power wireless networks,” 2004 IEEE International Conference on Performance, Computing, and Communications, pp.701-706, 2004.
    [ 9 ] N. Salman, I. Rasool and A.H. Kemp, “Overview of the IEEE 802.15.4 standards family for Low Rate Wireless Personal Area Networks,” 2010 7th International Symposium on Wireless Communication Systems (ISWCS), pp.701-705, 19-22 Sept. 2010.
    [ 10 ] J.-S. Lee, “An experiment on performance study of IEEE 802.15.4 wireless networks,” 2005. ETFA 2005. 10th IEEE Conference on Emerging Technologies and Factory Automation, vol.2, pp.451-458, 19-22 Sept. 2005.
    [ 11 ] P. Tae and M.J. Lee, “Power saving algorithms for wireless sensor networks on IEEE 802.15.4,” IEEE Communications Magazine, vol.46, issue 6, pp.148-155, June 2008.
    [ 12 ] J.-S. Lee, “Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks,” IEEE Transactions on Consumer Electronics, vol. 52, issue 3, pp.742-749, Aug. 2006.
    [ 13 ] M. Martalo, S. Busanelli and G. Ferrari, “Markov Chain-based performance analysis of multihop IEEE 802.15.4 wireless networks,” Performance Evaluation, vol. 66, issue 12, pp. 722-741, Dec. 2009.
    [ 14 ] D. Puccinelli and M. Haenggi, “Wireless sensor networks: applications and challenges of ubiquitous sensing,” IEEE Circuits and Systems Magazine, vol.5, issue 3, pp.19-31, 2005.
    [ 15 ] D. Digon, N. Medrano, B. Calvo, M.T. Sanz and S. Celma, “Practical experience for designing a power-efficient wireless sensor network,” 2008 19th EAEEIE Annual Conference, pp.118-122, June 29 2008-July 2 2008.
    [ 16 ] T. Paso, J. Makela and J. Iinatti, “Enhancing the IEEE 802.15.4 MAC with dynamic GTS allocation for medical applications,” 2011 14th International Symposium on Wireless Personal Multimedia Communications (WPMC), pp.1-5, 3-7 Oct. 2011.
    [ 17 ] C. Gezer and C. Buratti, “A ZigBee Smart Energy Implementation for Energy Efficient Buildings,” 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), pp.1-5, 15-18 May 2011.
    [ 18 ] S.-Y. Tseng, C.-H. Tsai, Y.-S. Lai and W.-C. Fang, “A wireless biomedical sensor network using IEEE802.15.4,” 2009. LiSSA 2009. IEEE/NIH Life Science Systems and Applications Workshop, pp.183-186, 9-10 April 2009.
    [ 19 ] H. S. Kim, J.-H. Song and S. Lee, “Energy-efficient traffic scheduling in IEEE 802.15.4 for home automation networks,” IEEE Transactions on Consumer Electronics, vol.53, issue 2, pp.369-374, May 2007.
    [ 20 ] S. L. Ullo, A. Vaccaro and G. Velotto, “Performance Analysis of IEEE 802.15.4 based Sensor Networks for Smart Grids Communications,” Journal of Electrical Engineering: Theory and Application, vol.1, issue 3, pp.129-134, 2010.
    [ 21 ] D.-M. Han and J.-H. Lim, “Smart home energy management system using IEEE 802.15.4 and zigbee,” IEEE Transactions on Consumer Electronics, vol.56, issue 3, pp.1403-1410, Aug. 2010.
    [ 22 ] U.S. Energy Information Administration, “International Energy Outlook 2011,” pp. 1-301, Sept. 2011, website http://www.eia.gov/forecasts/ieo/.
    [ 23 ] 彭開瓊、陳志堅、陳仁宗、高幸滿。「科技家庭與傳統家庭用電效率比較:DEA 的應用」,碳經濟,第19期,頁20-33,2011。
    [ 24 ] C. Gomez and J. Paradells, “Wireless home automation networks: A survey of architectures and technologies,” IEEE Communications Magazine, vol.48, issue 6, pp.92-101, June 2010.
    [ 25 ] Z.M. Fadlullah, M.M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki and Y. Nozaki, “Toward intelligent machine-to-machine communications in smart grid,” IEEE Communications Magazine, vol.49, issue 4, pp.60-65, April 2011.
    [ 26 ] Y. Jeon, “QoS Requirements for the Smart Grid Communications System,” IJCSNS International Journal of Computer Science and Network Security, vol.11 issue 3, pp.86–94, March 2011.
    [ 27 ] “IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), End-Use Applications, and Loads,” IEEE Std 2030-2011, pp.1-126, Sept. 10 2011.

    [ 28 ] D. J. Leeds, “The Smart Grid In 2010 : Market segments, applications and industry players,” pp.1-145, July 2009.
    [ 29 ] M. Kim, J. Kim, J. Kim and Y. Yoo, “Design and Implementation of MAC Protocol for SmartGrid HAN Environment,” 2011 IEEE 11th International Conference on Computer and Information Technology (CIT), pp.212-217, Aug. 31 2011-Sept. 2 2011.
    [ 30 ] W. Sun, X. Yuan, J. Wang, D. Han and C. Zhang, “Quality of Service Networking for Smart Grid Distribution Monitoring,” 2010 First IEEE International Conference on Smart Grid Communications, pp.373-378, 4-6 Oct. 2010.
    [ 31 ] R. Severino, M. Batsa, M. Alves and A. Koubaa, “A Traffic Differentiation Add-On to the IEEE 802.15.4 Protocol: Implementation and Experimental Validation over a Real-Time Operating system,” 2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools (DSD), pp.501-508, 1-3 Sept. 2010.
    [ 32 ] F. Gomez-Cuba, R. Asorey-Cacheda and F.J. Gonzalez-Castano, “WiMAX for smart grid last-mile communications: TOS traffic mapping and performance assessment,” 2012 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), pp.1-8, 14-17 Oct. 2012.
    [ 33 ] G. Ferrari, P. Medagliani, S. Di Piazza and M. Martalo, “Wireless Sensor Networks: Performance Analysis in Indoor Scenarios,” EURASIP Journal on Wireless Communications and Networking, Vol. 2007, Jan. 2007.

    QR CODE