簡易檢索 / 詳目顯示

研究生: 曾至堅
Chih-Chien Tseng
論文名稱: 具寬廣控速範圍雙電動機驅動系統之研製
Design and Implementation of a Wide-range Adjustable Speed Drive System With Dual Motors
指導教授: 劉添華
Tian-Hua Liu
口試委員: 劉益華
Tian-Hua Liu
林法正
none
廖聰明
none
許源浴
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 104
中文關鍵詞: 雙電動機最佳化效率交錯式直流升壓轉換器
外文關鍵詞: dual-motor, optimal efficiency, interleave, boost converter
相關次數: 點閱:330下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一雙電動機驅動系統,以提高控速範圍及運轉效率。文中提出兩種新穎的方法以進行兩部永磁同步電動機的驅動控制。方法一利用雙電動機最佳化效率達成轉矩分配,驅動系統在低速時具有高轉矩輸出,達成最佳化效率雙電動機驅動。方法二利用交錯式切換方法對直流鏈電壓進行升壓控制,當驅動系統在高速時,第一部電動機維持在靜止狀態,其定子繞組當作電感,達成提升直流鏈電壓供第二部電動機使用,以提高第二部電動機的控速範圍。
    本文使用德州儀器公司TMS320F2808數位信號處理器作為控制核心,以實現雙電動機驅動系統。最後以實測結果說明本文所提方法的正確性及可行性。


    The thesis presents the implementation of a novel dual-motor drive system with to extended adjustable speed range and improved efficiency. Two mothods are used to control dual permanent-magnet synchronous motors. Method-1 uses the optimal efficiency algorithm to achieve the torque distribution. When the motors are operated at a low speed range, the high torque outputs can be obtained. Method-2 uses interleaving switching method to boost the dc-bus voltage. When the system is operated at a high speed range, one motor is maintained at standstill and its stator windings are used as inductances to boost dc-bus voltage for another motor to extend its adjustable speed range.
    A digital signal processor, TMS320F2808, is used as a control center to control a dual-motor drive system. Experimental results can validate the correctness and feasibility of the proposed methods.

    中文摘要I AbstractII 目錄III 圖目錄VI 表目錄X 符號索引XI 第一章緒論1 1.1背景及動機1 1.2文獻回顧3 1.3研究目的6 1.4論文大綱7 第二章永磁同步電動機8 2.1簡介8 2.2結構及特性8 2.3數學模型12 第三章雙電動機的驅控方法20 3.1簡介20 3.2雙電動機的組合評估22 3.3電動機的效率分析26 3.4雙電動機的最佳化效率組合31 3.5雙電動機的低速驅動策略35 3.5.1電流控制器設計39 3.6雙電動機的高速驅動策略42 第四章直流升壓控制45 4.1簡介45 4.2交錯式升壓策略46 4.3閉迴路電壓控制53 4.3.1控制器設計55 第五章系統研製57 5.1簡介57 5.2硬體電路製作61 5.2.1三相變頻器電路61 5.2.2電流偵測電路63 5.2.3過電流保護電路64 5.2.4編碼器電路65 5.2.5電壓偵測電路66 5.2.6電源電路66 5.2.7CAN通訊電路68 5.2.8數位信號處理器70 5.3軟體程式設計73 5.3.1主程式流程73 5.3.2中斷程式流程74 第六章實測結果79 6.1簡介79 6.2實測結果81 第七章結論與建議98 參考文獻99

    [1]S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 60, no. 1, pp. 111-122, Jan. 2011.
    [2]A. Emadi, Y. J. Lee, and K. Rajashekara, “Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2237-2245, June 2008.
    [3]Y. Xiong, X. Cheng, Z. J. Shen, C. Mi, H. Wu, and V. K. Garg, “Prognostic and warning system for power-electronic modules in electric, hybrid electric, and fuel-cell vehicles,” IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2268-2276, June 2008.
    [4]K. M. Kim, S. H. Park, J. H. Lee, C. H. Jung, and C. Y. Won, “Mode change method of bi-directional DC-DC converter for electric vehicle,” IEEE ICPE-2011, pp. 2687-2693, May/June 2011.
    [5]M. J. Yang, H. L. Jhou, B. Y. Ma, and K. K. Shyu, “A cost effective method of electric brake with energy regeneration for electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2203-2212, June 2009.
    [6]R. Hall and W. J. Konstanty, “Commutation of DC motor,” IEEE Transactions on Industry Applications Magazine, pp. 56-62, Nov./Dec. 2010.
    [7]A. K. Jain and V. T. Ranganathan, “Hybrid LCI/VSI power circuit—a universal high-power converter solution for wound field synchronous motor drives,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4057-4068, Sep. 2011.
    [8]S. Onoda and A. Emadi, “PSIM based modeling of automotive power systems conventional electric and hybrid electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 53, no. 2, pp. 390-400, Mar. 2004.
    [9]W. L. Soong and N. Ertugrul, “Field-weakening performance of interior permanent magnet motors,” IEEE Transactions on Industry Applications, vol. 38, no. 5, pp. 1251-1258, Sep./Oct. 2002.
    [10]E. B. Kosmatopoulos, “Adaptive control design based on adaptive optimization principles,” IEEE Transactions on Automatic Control, vol. 53, no. 11, pp. 2680-2685, Dec. 2008.
    [11]J. L. Shi, T. H. Liu, and S. H. Yang, “Nonlinear-controller design for an interior-permanent-magnet synchronous motor including field-weakening operation,” IET Electr. Power Appl., vol. 1, no. 1, pp. 119-126, Jan. 2007.
    [12]P. D. Pfister and Y. Perriard, “Slotless permanent-magnet machines general analytical magnetic field calculation,” IEEE Transactions on Magnetics, vol. 47, no. 6, pp. 1739-1752, June 2011.
    [13]L. Zhu, S. Z. Jiang, Z. Q. Zhu, and C. C. Chan, “Analytical methods for minimizing cogging torque in permanent-magnet machines,” IEEE Transactions on Magnetics, vol. 45, no. 4, pp. 2023-2031, Apr. 2009.
    [14]Z. Azar, Z. Q. Zhu and G. Ombach, “Influence of electric loading and magnetic saturation on cogging torque, back-EMF and torque ripple of PM machines,” IEEE Transactions on Magnetics, vol. 48, no. 10, pp. 2650-2658, Oct. 2012.
    [15]M. S. Islam, R. Islam, and T. Sebastian, “Experimental verification of design techniques of permanent-magnet synchronous motors for low-torque-ripple applications,” IEEE Transactions on Industry Applications, vol. 47, no. 1, pp. 88-95, Jan./Feb. 2011.
    [16]G. Cvetkovski and L. Petkovska, “Performance improvement of PM synchronous motor by using soft magnetic composite material,” IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 3812-3815, Nov. 2008.
    [17]H. Huang and L. Chang, “Electrical two-speed propulsion by motor winding switching and its control strategies for electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 48, no. 2, pp. 607-618, Mar. 1999.
    [18]K. Baoquan, L. Chunyan, and C. Shukang, “Flux weakening characteristic analysis of a new permanent-magnet synchronous motor used for electric vehicles,” IEEE Transactions on Plasma Science, vol. 39, no. 1, pp. 511-515, Jan. 2011.
    [19]Y. Inoue, S. Morimoto, and M. Sanada, “Comparative study of PMSM drive systems based on current control and direct torque control in flux-weakening control region,” IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2382-2389, Nov./Dec. 2012.
    [20]M. S. Kwak and S. K. Sul, “Flux weakening control of an open winding machine with isolated dual inverters,” IEEE IAS-2007, pp. 251-255, Sep. 2007.
    [21]K. R. Sekhar and S. Srinivas, “Discontinuous decoupled PWMs for reduced current ripple in a dual two-level inverter fed open-end winding induction motor drive,” IEEE Transactions on Power electronics, vol. 28, no. 5, pp. 2493-2502, May 2013.
    [22]K. Yamamoto, K. Shinohara, and H. Makishima, “Comparison between flux weakening and PWM inverter with voltage booster for permanent magnet synchronous motor drive,” IEEE PCC-2002, Osaka Japan, pp. 161-166, 2002.
    [23]S. M. Sue, J. H. Liaw, and Y. H. Liao, “Design and implementation of a dynamic voltage boosting drive for permanent magnet synchronous motors,” IEEE IPEC-2010, pp. 1398-1402, June 2010.
    [24]H. Lee and Y. Choi, “A new actuator system using dual-motors and a planetary gear,” IEEE Transactions on Mechatronics, vol. 17, no. 1, pp. 192-197, Feb. 2012.
    [25]Y. H. Yeh, M. F. Hsieh, and D. G. Dorrell, “Different arrangements for dual rotor dual output radial flux motors,” IEEE Transactions on Industry Applications, vol. 48, no. 2, pp. 612-622, Mar./Apr. 2012.
    [26]H. Akita, Y. Nakahara, N. Miyake, and T. Oikawa, “A new core” IEEE Transactions on Industry Applications Magazine, pp. 38-43, Nov./Dec. 2005.
    [27]A. Consoli, G. Scarcella, G. Scelba, and A. Testa, “Steady state and transient operation of IPMSMs under maximum torque per ampere,” IEEE Transactions on Industry Applications, vol. 46, no. 1, pp. 121-129, Jan./Feb. 2012.
    [28]P. C. Krause, Analysis of electric machinery, New York: McGraw-Hill, 1986.
    [29]D. Yin, S. Oh, and Y. Hori, “A novel traction control for EV based on maximum transmissible torque estimation,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2086-2094, June 2009.
    [30]R. Sehab, B. Barbedtte, and M. Chauvin, “Electric vehicle drive train: sizing and validation using general and particular mission profiles,” IEEE ICMECH-2011, pp. 77-83, Apr. 2011.
    [31]S. I. Sakai, H. Sado, and Y. Hori, “Motion control in an electric vehicle with four independently driven in-wheel motors,” IEEE Transactions on Mechatronics, vol. 4, no. 1, pp. 9-16 Mar. 1999.
    [32]N. Mutoh and Y. Takahashi, “Front and rear wheel independent drive type electric vehicle (FRID EV) with the outstanding driving performance suitable for next-generation adavanced EVs,” IEEE VPCC-2009, pp. 1064-1070, Sep. 2009.
    [33]C. Geng, L. Mostefai, M. Denai, and Y. Hori, “Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1411-1419, May 2009.
    [34]E. Ledezma, B. Mcgrath, A. Munoz, and T. A. Lipo, “Dual AC drive system with a reduced switch count,” IEEE Transactions on Industry Applications, vol. 37, no. 5, pp. 1325-1333, Sep./Oct. 2001.
    [35]R. Nalepa and T. O. Kowalska, “Optimum trajectory control of the current vector of a nonsalient-pole PMSM in the field-weakening region,” IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 2867-2876, July 2012.
    [36]S. M. Sue and C. T. Pan, “Voltage-constraint-tracking-based field-weakening control of IPM synchronous motor drives,” IEEE Transactions on Industry Applications, vol. 55, no. 1, pp. 340-347, Jan. 2008.
    [37]D. C. Hanselman, Brushless Permagnent Magnet Motor Design, Cranston, R.I. : The Writers’ Collective, 2003.
    [38]G. Pellegrino, E. Armando, and P. Guglielmi, “An integral battery charger with power factor correction for electric scooter,” IEEE Transactions on Power electronics, vol. 25, no. 3, pp. 751-759, Mar. 2010.
    [39]G. T. Chiang and J. I. Itoh, “A high efficiency three-phase AC motor drive converter that utilized the neutral point of a motor,” IEEE PEDS-2009, pp. 783-788, Nov. 2009.
    [40]S. H. Park, S. R. Park, J. S. Yu, Y. C. Jung, and C. Y. Won, “Analysis and design of a soft-switching boost converter with an bi-bridge auxiliary resonant circuit,” IEEE Transactions on Power electronics, vol. 25, no. 8, pp. 2142-2149 Aug. 2010.
    [41]D. O. Neacsu, W. Bonnice, and E. Holmansky, “On the small-signal modeling of parallel/interleaved buck/boost converters,” IEEE ISIE-2010, pp.2708-2713, Nov.2010.
    [42]Texas Instruments, TMS320x280x Digital Signal Precessors, 2002.
    [43]Texas Instruments, TMS320x280x DSP Analog to Digital Converter, 2004.
    [44]Texas Instruments, TMS320x280x Enhanced Controller Area Network, 2002.

    QR CODE