簡易檢索 / 詳目顯示

研究生: 蘇彥韶
Yen-Shao Su
論文名稱: 可調控離子傳輸與滲透能源轉換之奈米流體裝置: 實驗與模擬
Nanofluidics for Controllable Ion Transport and Osmotic Power Conversion: Experiments and Simulation
指導教授: 葉禮賢
Li-Hsien Yeh
口試委員: 徐治平
Jyh-Ping Hsu
童國倫
Kuo-Lun Tung
郭勇志
Yung-Chih Kuo
闕居振
Chu-Chen Chueh
楊宏達
Hong-ta Yang
葉禮賢
Li-Hsien Yeh
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 151
中文關鍵詞: 奈米流體離子傳輸滲透能源轉換陽極氧化鋁
外文關鍵詞: Nanofluidics, Ion transport, Osmotic power conversion, Anodic aluminum oxide
相關次數: 點閱:426下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

生物細胞膜中的離子通道具有調控離子傳輸的功能,在多種的生理過程中扮演重要的角色。藉由外部環境刺激,如細胞膜電位差、鹽濃度梯度、以及光照,可以觸發生物離子通道展現出離子選擇性、離子閘門、以及離子電流整流之特殊離子傳輸行為。啟發於此,具有可調控離子傳輸的人造奈米流體裝置近年來備受矚目,因為此奈米流體裝置在滲透能源轉換、離子二極體、以及生物感測器的應用非常具有前景。這些應用當中,由於對永續能源的需求不斷增長,因此,通過離子選擇性薄膜將存在於鹽度梯度中的化學勢能轉換為電能的滲透能源(或稱為藍色能源)極具潛力。然而,作為一新興研究領域,滲透能源轉換的原理尚未臻至成熟。為了獲得更多相關的物理機制,以更全面的理解離子二極體與滲透能源發電裝置,本論文著重於建立新理論模型並開發新的奈米流體整流裝置。本篇論文展示了孔徑範圍從次奈米級至次微米級的奈米流體裝置中,可調控之離子傳輸以及滲透能源轉換。例如,本篇論文第三章,我藉由設計不同長度的圓柱形陽極氧化鋁奈米通道來探討通道長度對滲透能源轉換的影響。實驗結果發現,不論奈米通道表面帶正電或負電,在足夠短的奈米通道中,通道長度越短,產生的滲透能源越低。此實驗結果與過往滲透能源轉換的認知相互牴觸。本篇論文的理論模擬考慮氧化鋁奈米通道的表面化學反應,理論模擬結果支持此異常通道長度相關之滲透能源轉換。理論模擬結果指出,在極短的奈米通道中會產生嚴重的離子濃度極化現象,進而降低有效鹽濃度梯度與離子選擇性。
根據過去文獻,藉由提高表面電荷與孔道結構的不對稱性,可以增強離子電流整流效應,進而提升滲透能源轉換。因此,第四章我研究分支型陽極氧化鋁奈米通道在不對稱溶液pH梯度下,其離子傳輸行為與滲透能源轉換。實驗與理論模擬結果發現,不對稱溶液pH梯度可引起奈米通道的雙極性表面帶電性質。藉由不對稱溶液pH梯度,增強離子電流整流效應與方向性的調控,進而增強在人造海水與河水(500 mM/10 mM NaCl)中的滲透能源功率密度達到5.89 W/m2。
第五章,我開發了光敏性次奈米通道異質薄膜,由光敏性硫化螺吡喃 (SSP) 和沸石咪唑骨架 (ZIF-8) 奈米複合材料以及分支型陽極氧化鋁薄膜所組成,並研究其光反應之離子傳輸行為與滲透能源轉換。在UV光照射之下,SSP分子進行由SP型式轉換為MC型式之結構異構化,進而利用此性質來達成離子電流的開關狀態。此性質與高離子選擇性次奈米通道ZIF-8/SSP 膜結合,可在高鹽濃度環境下(5000 mM/10 mM NaCl,模擬鹽湖水和河流),實現前所未有高達 32.5 W/m2的功率密度輸出,優於目前已報導最先進之薄膜。
奈米流體裝置雖然具有可調控離子傳輸性質與高效能滲透能源轉換,然而,其奈米通道尺度大約落於1 ~ 100奈米,造成了高薄膜阻力。第六章,我使用電壓退火製程(voltage-annealing process)製備具有離子電流整流特性的延伸-奈米流體裝置(中尺度孔洞)。其離子電流整流行為來自,電壓退火過程中生成的次氯酸根離子( )受到電雙層中的鉀離子(K+)吸引,使得通道表面電荷增強。此行為也被密度泛函理論與分子動態理論所驗證。此單一中孔延伸-奈米流體裝置在中性環境下的滲透能源高達167 pW。


Ion channels in biological cell membranes regulate ion transport and play an essential role in various physiological processes. In response to external environmental stimuli, for example, cell membrane potential difference, salt concentration gradient, and light, biological ion channels can be triggered to exhibit unique ion transport behaviors such as ion selectivity, ionic gate, and ion current rectification. Inspired by this, artificial nanofluidic devices with tunable ion transport have attracted much attention in recent years because nanofluidic devices are tremendously promising for applications in osmotic power conversion, ionic diodes, and biosensors. Among these applications, the osmotic energy (or called blue energy), in which the chemical potential energy existing in a salinity gradient can be converted into electricity by an ion-selective membrane, has attracted great potential because of the growing needs of sustainable energy. However, as an emerging research field, the principles of osmotic energy conversion have not yet reached maturity. To get more physical insights towards a better understanding of ionic diodes and osmotic energy generators, this thesis focuses on establishing several new models and developing several new rectified nanofluidic devices. This thesis demonstrates the controllable ion transport and osmotic energy conversion in nanofluidics with pore sizes ranging from subnanometer-scale to submicrometer-scale. For example, in Chapter 3, I investigate the effect of the channel length on osmotic energy conversion performance using the cylindrical anodized aluminum nanochannels with designed lengths. The experimental results show that, regardless of whether the nanochannel surface is positively or negatively charged, the shorter the channel length, the lower the osmotic power generated in a sufficiently short nanochannel, which is contrary to the previous knowledge of osmotic energy conversion. The anomalous channel-length-dependent osmotic energy conversion behavior is well supported by our model with considering surface chemistry reactions of alumina nanochannels. Theoretical simulations indicate that severe ion concentration polarization will occur in extremely short nanochannels, reducing the effective concentration gradient and ion selectivity.
According to previous studies, the ion current rectification effect can be enhanced by increasing the asymmetry of surface charge and pore structure, thereby improving the osmotic energy conversion. Therefore, in Chapter 4, I investigate ion transport behaviors and osmotic energy conversion of branched anodic alumina nanochannels in asymmetric solution pH environments. Experiments and theoretical simulations reveal that asymmetric pH gradients can induce bipolar surface charges of nanochannels. Enhanced and regulated ion current rectification can be achieved by adjusting the asymmetric solution pH gradient, thus realizing a significantly promoted osmotic power output of up to 5.89 W/m2 at the mixing of synthetic seawater and river water (500 mM/10 mM NaCl).
In Chapter 5, I develop a light-sensitive subnanochannel heterogeneous membrane, consisting of a light-sensitive sulfonated spiropyran (SSP) and zeolite imidazole framework (ZIF-8) nanocomposite and a branched anodic alumina membrane. The light-responsive ion transport behavior and osmotic energy harvesting performance are comprehensively studied. I show that under UV light irradiation, the SSP undergoes structural isomerization, converting from SP to MC form. I thus use this property to control the on/off state of ionic current. Integrating with the highly ion-selective subnanochannel ZIF-8/SSP membrane, an unprecedented power density output as high as 32.5 W/m2 can be achieved under a hypersaline salinity environment (5000 mM/10 mM NaCl, simulating salt-lake water and river water), outperforming all reported state-of-the-art membranes.
Although nanofluidic devices have controllable ion transport properties and high-performance osmotic power conversion, their characteristic pore sizes are about 1-100 nanometers, resulting in high membrane resistance. In Chapter 6, I fabricate the extended-nanofluidics (mesoscale pores) with ionic current rectification properties using the voltage-annealing process. I show that the ionic current rectification behavior stems from the attraction between the chlorate anions generated during the voltage annealing process and the potassium ions in the electric double layer and thus enhances the surface charge of the channel. This behavior is also verified by density functional theory and molecular dynamics theory. A single extended-nanofluidic mesopore device can reach an ultrahigh osmotic power of up to 167 pW in a neutral environment.

Table of Contents 中文摘要 I Abstract III Acknowledgments VI Table of Contents VII List of Figures IX List of Table XVII Chapter 1 - Introduction 18 1.1 Background 18 1.2 Literature review 22 Chapter 2 - Mechanism 31 2.1 Fundamental of Nanofluidics 31 2.2 Ion current rectification 35 2.3 Osmotic energy conversion 36 Chapter 3 - Unraveling the Anomalous Channel-Length-Dependent Blue Energy Conversion Using Engineered Alumina Nanochannels 40 3.1 Introduction 40 3.2 Experimental Section 44 3.3 Results and Discussion 48 3.4 Conclusion 66 Chapter 4 - Bioinspired pH Gradient Induced Rectification Inversion in Asymmetric Nanochannels for Remarkably Improved Osmotic Power 67 4.1 Introduction 67 4.2 Experimental Section 70 4.3 Results and Discussion 75 4.4 Conclusion 92 Chapter 5 - High-Performance Osmotic Power Harvesting Using Light-Responsive SSP/ZIF-8@BAN Heterogeneous Membrane under Hypersaline Salt Gradient 93 5.1 Introduction 93 5.2 Experimental Section 95 5.3 Results and Discussion 97 5.4 Conclusion 109 Chapter 6 - Voltage-Annealing-Induced Ion Current Rectification in Mesopore 110 6.1 Introduction 110 6.2 Experimental Section 112 6.3 Results and Discussion 113 6.4 Conclusion 127 Appendix 129 Reference 132

[1] Hille, B., Ionic Channels in Excitable Membranes. Current Problems and Biophysical Approaches. Biophys. J. 1978, 22, 283-294.
[2] Hodgkin, A. L.; Huxley, A. F., A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve. J. Physiol. 1952, 117, 500-544.
[3] Kubo, Y.; Baldwin, T. J.; Nung Jan, Y.; Jan, L. Y., Primary Structure and Functional Expression of a Mouse Inward Rectifier Potassium Channel. Nature 1993, 362, 127-133.
[4] Taruno, A.; Vingtdeux, V.; Ohmoto, M.; Ma, Z.; Dvoryanchikov, G.; Li, A.; Adrien, L.; Zhao, H.; Leung, S.; Abernethy, M., Calhm1 Ion Channel Mediates Purinergic Neurotransmission of Sweet, Bitter and Umami Tastes. Nature 2013, 495, 223-226.
[5] Auzanneau, C.; Thoreau, V.; Kitzis, A.; Becq, F., A Novel Voltage-Dependent Chloride Current Activated by Extracellular Acidic pH in Cultured Rat Sertoli Cells. J. Biol. Chem. 2003, 278, 19230-19236.
[6] Lesage, F.; Guillemare, E.; Fink, M.; Duprat, F.; Lazdunski, M.; Romey, G.; Barhanin, J., A pH-Sensitive Yeast Outward Rectifier K+ Channel with Two Pore Domains and Novel Gating Properties. J. Biol. Chem. 1996, 271, 4183-4187.
[7] Reyes, R.; Duprat, F.; Lesage, F.; Fink, M.; Salinas, M.; Farman, N.; Lazdunski, M., Cloning and Expression of a Novel pH-Sensitive Two Pore Domain K+ Channel from Human Kidney. J. Biol. Chem. 1998, 273, 30863-30869.
[8] Cheng, L.-J.; Guo, L. J., Ionic Current Rectification, Breakdown, and Switching in Heterogeneous Oxide Nanofluidic Devices. ACS Nano 2009, 3, 575-584.
[9] Guan, W.; Fan, R.; Reed, M. A., Field-Effect Reconfigurable Nanofluidic Ionic Diodes. Nat. Commun. 2011, 2, 1-8.
[10] Hou, X.; Yang, F.; Li, L.; Song, Y.; Jiang, L.; Zhu, D., A Biomimetic Asymmetric Responsive Single Nanochannel. J. Am. Chem. Soc. 2010, 132, 11736-11742.
[11] Ali, M.; Ahmed, I.; Ramirez, P.; Nasir, S.; Niemeyer, C. M.; Mafe, S.; Ensinger, W., Label‐Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores. Small 2016, 12, 2014-2021.
[12] Shang, X.; Xie, G.; Kong, X. Y.; Zhang, Z.; Zhang, Y.; Tian, W.; Wen, L.; Jiang, L., An Artificial Co2‐Driven Ionic Gate Inspired by Olfactory Sensory Neurons in Mosquitoes. Adv. Mater. 2017, 29, 1603884.
[13] Vlassiouk, I.; Kozel, T. R.; Siwy, Z. S., Biosensing with Nanofluidic Diodes. J. Am. Chem. Soc. 2009, 131, 8211-8220.
[14] Fu, L.; Wang, Y.; Jiang, J.; Lu, B.; Zhai, J., Sandwich “Ion Pool”-Structured Power Gating for Salinity Gradient Generation Devices. ACS Appl. Mater. Interfaces 2021, 13, 35197-35206.
[15] Laucirica, G.; Toimil-Molares, M. E.; Trautmann, C.; Marmisollé, W.; Azzaroni, O., Polyaniline for Improved Blue Energy Harvesting: Highly Rectifying Nanofluidic Diodes Operating in Hypersaline Conditions via One-Step Functionalization. ACS Appl. Mater. Interfaces 2020, 12, 28148-28157.
[16] Lin, C.-Y.; Combs, C.; Su, Y.-S.; Yeh, L.-H.; Siwy, Z. S., Rectification of Concentration Polarization in Mesopores Leads to High Conductance Ionic Diodes and High Performance Osmotic Power. J. Am. Chem. Soc. 2019, 141, 3691-3698.
[17] Sui, X.; Zhang, Z.; Li, C.; Gao, L.; Zhao, Y.; Yang, L.; Wen, L.; Jiang, L., Engineered Nanochannel Membranes with Diode-Like Behavior for Energy Conversion over a Wide pH Range. ACS Appl. Mater. Interfaces 2018, 11, 23815-23821.
[18] Ramon, G. Z.; Feinberg, B. J.; Hoek, E. M. V., Membrane-Based Production of Salinity-Gradient Power. Energy Environ. Sci. 2011, 4, 4423-4434.
[19] Zhang, L.; Chen, X. D., Nanofluidics for Giant Power Harvesting. Angew. Chem., Int. Ed. 2013, 52, 7640-7641.
[20] Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T., Principles and Applications of Nanofluidic Transport. Nat. Nanotechnol. 2009, 4, 713-720.
[21] Feng, J. D.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A., Single-Layer MoS2 Nanopores as Nanopower Generators. Nature 2016, 536, 197-200.
[22] Guo, W.; Cao, L. X.; Xia, J. C.; Nie, F. Q.; Ma, W.; Xue, J. M.; Song, Y. L.; Zhu, D. B.; Wang, Y. G.; Jiang, L., Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Adv. Energy Mater. 2010, 20, 1339-1344.
[23] Liu, X.; He, M.; Calvani, D.; Qi, H. Y.; Gupta, K.; de Groot, H. J. M.; Sevink, G. J. A.; Buda, F.; Kaiser, U.; Schneider, G. F., Power Generation by Reverse Electrodialysis in a Single-Layer Nanoporous Membrane Made from Core-Rim Polycyclic Aromatic Hydrocarbons. Nat. Nanotechnol. 2020, 15, 307-312.
[24] Ma, T. J.; Balanzat, E.; Janot, J. M.; Balme, S., Nanopore Functionalized by Highly Charged Hydrogels for Osmotic Energy Harvesting. ACS Appl. Mater. Interfaces 2019, 11, 12578-12585.
[25] Xin, W. W.; Zhang, Z.; Huang, X. D.; Hu, Y. H.; Zhou, T.; Zhu, C. C.; Kong, X. Y.; Jiang, L.; Wen, L. P., High-Performance Silk-Based Hybrid Membranes Employed for Osmotic Energy Conversion. Nat. Commun. 2019, 10, 3876.
[26] Gao, M. Y.; Tsai, P. C.; Su, Y. S.; Peng, P. H.; Yeh, L. H., Single Mesopores with High Surface Charges as Ultrahigh Performance Osmotic Power Generators. Small 2020, 16, 2006013.
[27] Hsu, J. P.; Su, T. C.; Peng, P. H.; Hsu, S. C.; Zheng, M. J.; Yeh, L. H., Unraveling the Anomalous Surface-Charge-Dependent Osmotic Power Using a Single Funnel-Shaped Nanochannel. ACS Nano 2019, 13, 13374-13381.
[28] Lin, C. Y.; Combs, C.; Su, Y. S.; Yeh, L. H.; Siwy, Z. S., Rectification of Concentration Polarization in Mesopores Leads to High Conductance Ionic Diodes and High Performance Osmotic Power. J. Am. Chem. Soc. 2019, 141, 3691-3698.
[29] Laucirica, G.; Albesa, A. G.; Toimil-Molares, M. E.; Trautmann, C.; Marmisolle, W. A.; Azzaroni, O., Shape Matters: Enhanced Osmotic Energy Harvesting in Bullet-Shaped Nanochannels. Nano Energy 2020, 71, 104612.
[30] Hwang, J.; Sekimoto, T.; Hsu, W. L.; Kataoka, S.; Endo, A.; Daiguji, H., Thermal Dependence of Nanofluidic Energy Conversion by Reverse Electrodialysis. Nanoscale 2017, 9, 12068-12076.
[31] Jung, J.; Kim, J.; Lee, H. S.; Kang, I. S.; Choi, K., Multi-Asymmetric Ion-Diode Membranes with Superior Selectivity and Zero Concentration Polarization Effect. ACS Nano 2019, 13, 10761-10767.
[32] Mai, V. P.; Yang, R. J., Boosting Power Generation from Salinity Gradient on High-Density Nanoporous Membrane Using Thermal Effect. Appl. Energy 2020, 274, 115294.
[33] Park, C. H.; Bae, H.; Kim, C. S.; Peck, D. H.; Lee, J., Nanofluidic Energy Harvesting through a Biological 1d Protein-Embedded Nanofilm Membrane by Interfacial Polymerization. Nano Energy 2020, 74, 104906.
[34] Xu, Y.; Song, Y.; Xu, F., Tempo Oxidized Cellulose Nanofibers-Based Heterogenous Membrane Employed for Concentration-Gradient-Driven Energy Harvesting. Nano Energy 2021, 79, 105486.
[35] Yeh, L. H.; Huang, Z. Y.; Liu, Y. C.; Deng, M. J.; Chou, T. H.; Yang, H. C. O.; Ahamad, T.; Alshehri, S. M.; Wu, K. C. W., A Nanofluidic Osmotic Power Generator Demonstrated in Polymer Gel Electrolytes with Substantially Enhanced Performance. J. Mater. Chem. A 2019, 7, 26791-26796.
[36] Zhang, D.; Ren, Y.; Fan, X.; Zhai, J.; Jiang, L., Photoassisted Salt-Concentration-Biased Electricity Generation Using Cation-Selective Porphyrin-Based Nanochannels Membrane. Nano Energy 2020, 76, 105086.
[37] Zhu, X. B.; Zhong, J. D.; Hao, J. R.; Wang, Y. Z.; Zhou, J. J.; Liao, J. W.; Dong, Y. J.; Pang, J. H.; Zhang, H. B.; Wang, Z. Z.; Zhang, W.; Zheng, W. T.; Jiang, Z. H.; Zhou, Y. H.; Jiang, L., Polymeric Nano-Blue-Energy Generator Based on Anion-Selective Ionomers with 3d Pores and pH-Driving Gating. Adv. Energy Mater. 2020, 10, 2001552.
[38] Wu, Z.; Ji, P.; Wang, B.; Sheng, N.; Zhang, M.; Chen, S.; Wang, H., Oppositely Charged Aligned Bacterial Cellulose Biofilm with Nanofluidic Channels for Osmotic Energy Harvesting. Nano Energy 2021, 80, 105554.
[39] Wu, C. R.; Xiao, T. L.; Tang, J. D.; Zhang, Q. Q.; Liu, Z. Y.; Liu, J. B.; Wang, H., Biomimetic Temperature-Gated 2d Cationic Nanochannels for Controllable Osmotic Power Harvesting. Nano Energy 2020, 76, 105113.
[40] Zhang, Z.; Yang, S.; Zhang, P. P.; Zhang, J.; Chen, G. B.; Feng, X. L., Mechanically Strong Mxene/Kevlar Nanofiber Composite Membranes as High-Performance Nanofluidic Osmotic Power Generators. Nat. Commun. 2019, 10, 2920.
[41] Zhang, Z.; Zhang, P. P.; Yang, S.; Zhang, T.; Loffler, M.; Shi, H. H.; Lohe, M. R.; Feng, X. L., Oxidation Promoted Osmotic Energy Conversion in Black Phosphorus Membranes. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 13959-13966.
[42] Hong, S.; Ming, F. W.; Shi, Y.; Li, R. Y.; Kim, I. S.; Tang, C. Y. Y.; Alshareef, H. N.; Wang, P., Two-Dimensional Ti3c2tx Mxene Membranes as Nanofluidic Osmotic Power Generators. ACS Nano 2019, 13, 8917-8925.
[43] Zhang, Z.; Sui, X.; Li, P.; Xie, G.; Kong, X.-Y.; Xiao, K.; Gao, L.; Wen, L.; Jiang, L., Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. J. Am. Chem. Soc. 2017, 139, 8905-8914.
[44] Cao, L.; Wen, Q.; Feng, Y.; Ji, D.; Li, H.; Li, N.; Jiang, L.; Guo, W., On the Origin of Ion Selectivity in Ultrathin Nanopores: Insights for Membrane‐Scale Osmotic Energy Conversion. Adv. Funct. Mater. 2018, 28, 1804189.
[45] Chen, J.; Xin, W.; Kong, X.-Y.; Qian, Y.; Zhao, X.; Chen, W.; Sun, Y.; Wu, Y.; Jiang, L.; Wen, L., Ultrathin and Robust Silk Fibroin Membrane for High-Performance Osmotic Energy Conversion. ACS Energy Lett. 2019, 5, 742-748.
[46] Su, Y.-S.; Hsu, S.-C.; Peng, P.-H.; Yang, J.-Y.; Gao, M.; Yeh, L.-H., Unraveling the Anomalous Channel-Length-Dependent Blue Energy Conversion Using Engineered Alumina Nanochannels. Nano Energy 2021, 84, 105930.
[47] Han, K.; Heng, L.; Wen, L.; Jiang, L., Biomimetic Heterogeneous Multiple Ion Channels: A Honeycomb Structure Composite Film Generated by Breath Figures. Nanoscale 2016, 8, 12318-12323.
[48] Kong, Y.; Fan, X.; Zhang, M.; Hou, X.; Liu, Z.; Zhai, J.; Jiang, L., Nanofluidic Diode Based on Branched Alumina Nanochannels with Tunable Ionic Rectification. ACS Appl. Mater. Interfaces 2013, 5, 7931-7936.
[49] Li, C.-Y.; Wu, Z.-Q.; Yuan, C.-G.; Wang, K.; Xia, X.-H., Propagation of Concentration Polarization Affecting Ions Transport in Branching Nanochannel Array. Anal. Chem. 2015, 87, 8194-8202.
[50] Li, J.; Papadopoulos, C.; Xu, J., Growing Y-Junction Carbon Nanotubes. Nature 1999, 402, 253-254.
[51] Xie, X.; Crespo, G. A.; Mistlberger, G.; Bakker, E., Photocurrent Generation Based on a Light-Driven Proton Pump in an Artificial Liquid Membrane. Nat. Chem. 2014, 6, 202-207.
[52] Samanta, D.; Galaktionova, D.; Gemen, J.; Shimon, L. J.; Diskin-Posner, Y.; Avram, L.; Král, P.; Klajn, R., Reversible Chromism of Spiropyran in the Cavity of a Flexible Coordination Cage. Nature communications 2018, 9, 1-9.
[53] Klajn, R., Spiropyran-Based Dynamic Materials. Chem. Soc. Rev. 2014, 43, 148-184.
[54] Balme, S.; Ma, T. J.; Balanzat, E.; Janot, J. M., Large Osmotic Energy Harvesting from Functionalized Conical Nanopore Suitable for Membrane Applications. J. Membr. Sci. 2017, 544, 18-24.
[55] Graf, M.; Lihter, M.; Unuchek, D.; Sarathy, A.; Leburton, J. P.; Kis, A.; Radenovic, A., Light-Enhanced Blue Energy Generation Using MoS2 Nanopores. Joule 2019, 3, 1549-1564.
[56] Gao, J.; Guo, W.; Feng, D.; Wang, H. T.; Zhao, D. Y.; Jiang, L., High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation. J. Am. Chem. Soc. 2014, 136, 12265-12272.
[57] Chen, K. X.; Yao, L. N.; Yan, F.; Liu, S. S.; Yang, R. J.; Su, B., Thermo-Osmotic Energy Conversion and Storage by Nanochannels. J. Mater. Chem. A 2019, 7, 25258-25261.
[58] Sui, X.; Zhang, Z.; Li, C.; Gao, L. C.; Zhao, Y.; Yang, L. J.; Wen, L. P.; Jiang, L., Engineered Nanochannel Membranes with Diode-Like Behavior for Energy Conversion over a Wide pH Range. ACS Appl. Mater. Interfaces 2019, 11, 23815-23821.
[59] Sun, Y.; Dong, T. D.; Lu, C. X.; Xin, W. W.; Yang, L. S.; Liu, P.; Qian, Y. C.; Zhao, Y. Y.; Kong, X. Y.; Wen, L. P.; Jiang, L., Tailoring a Poly(Ether Sulfone) Bipolar Membrane: Osmotic-Energy Generator with High Power Density. Angew. Chem., Int. Ed. 2020, 59, 17423-17428.
[60] Siwy, Z. S., Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Energy Mater. 2006, 16, 735-746.
[61] Kalman, E. B.; Vlassiouk, I.; Siwy, Z. S., Nanofluidic Bipolar Transistors. Adv. Mater. 2008, 20, 293-297.
[62] Ma, L.; Li, Z.; Huang, C.; Siwy, Z. S.; Qiu, Y. H., Modulation of Ionic Current Rectification in Ultrashort Conical Nanopores. Anal. Chem. 2020, 92, 16188-16196.
[63] Hwang, J.; Kataoka, S.; Endo, A.; Daiguji, H., Enhanced Energy Harvesting by Concentration Gradient-Driven Ion Transport in Sba-15 Mesoporous Silica Thin Films. Lab Chip 2016, 16, 3824-3832.
[64] Zhang, Z.; Sui, X.; Li, P.; Xie, G. H.; Kong, X. Y.; Xiao, K.; Gao, L. C.; Wen, L. P.; Jiang, L., Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. J. Am. Chem. Soc. 2017, 139, 8905-8914.
[65] Xiao, K.; Giusto, P.; Wen, L. P.; Jiang, L.; Antonietti, M., Nanofluidic Ion Transport and Energy Conversion through Ultrathin Free-Standing Polymeric Carbon Nitride Membranes. Angew. Chem., Int. Ed. 2018, 57, 10123-10126.
[66] Yan, F.; Yao, L. N.; Chen, K. X.; Yang, Q.; Su, B., An Ultrathin and Highly Porous Silica Nanochannel Membrane: Toward Highly Efficient Salinity Energy Conversion. J. Mater. Chem. A 2019, 7, 2385-2391.
[67] Fu, Y. J.; Guo, X.; Wang, Y. H.; Wang, X. W.; Xue, J. M., An Atomically-Thin Graphene Reverse Electrodialysis System for Efficient Energy Harvesting from Salinity Gradient. Nano Energy 2019, 57, 783-790.
[68] Zhang, Z.; He, L.; Zhu, C. C.; Qian, Y. C.; Wen, L. P.; Jiang, L., Improved Osmotic Energy Conversion in Heterogeneous Membrane Boosted by Three-Dimensional Hydrogel Interface. Nat. Commun. 2020, 11, 875.
[69] Nasir, S.; Ali, M.; Ramirez, P.; Gómez, V.; Oschmann, B.; Muench, F.; Tahir, M. N.; Zentel, R.; Mafe, S.; Ensinger, W., Fabrication of Single Cylindrical Au-Coated Nanopores with Non-Homogeneous Fixed Charge Distribution Exhibiting High Current Rectifications. ACS Appl. Mater. Interfaces 2014, 6, 12486-12494.
[70] Pérez-Mitta, G.; Albesa, A.; Gilles, F. M.; Toimil-Molares, M. E.; Trautmann, C.; Azzaroni, O., Noncovalent Approach toward the Construction of Nanofluidic Diodes with pH-Reversible Rectifying Properties: Insights from Theory and Experiment. J. Phys. Chem. C 2017, 121, 9070-9076.
[71] Vlassiouk, I.; Siwy, Z. S., Nanofluidic Diode. Nano Lett. 2007, 7, 552-556.
[72] Zhang, H.; Hou, X.; Zeng, L.; Yang, F.; Li, L.; Yan, D.; Tian, Y.; Jiang, L., Bioinspired Artificial Single Ion Pump. J. Am. Chem. Soc. 2013, 135, 16102-16110.
[73] Hsu, J.-P.; Su, T.-C.; Peng, P.-H.; Hsu, S.-C.; Zheng, M.-J.; Yeh, L.-H., Unraveling the Anomalous Surface-Charge-Dependent Osmotic Power Using a Single Funnel-Shaped Nanochannel. ACS Nano 2019, 13, 13374-13381.
[74] Siwy, Z. S., Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Funct. Mater. 2006, 16, 735-746.
[75] Wang, L.; Guo, W.; Xie, Y.; Wang, X.; Xue, J.; Wang, Y., Nanofluidic Diode Generated by pH Gradient inside Track-Etched Conical Nanopore. Radiat. Meas. 2009, 44, 1119-1122.
[76] Xiao, K.; Chen, L.; Zhang, Z.; Xie, G.; Li, P.; Kong, X. Y.; Wen, L.; Jiang, L., A Tunable Ionic Diode Based on a Biomimetic Structure‐Tailorable Nanochannel. Angew. Chem., Int. Ed. 2017, 56, 8168-8172.
[77] Zhang, X.; Xie, L.; Zhou, S.; Zeng, H.; Zeng, J.; Liu, T.; Liang, Q.; Yan, M.; He, Y.; Liang, K., Interfacial Superassembly of Mesoporous Titania Nanopillar-Arrays/Alumina Oxide Heterochannels for Light-and pH-Responsive Smart Ion Transport. ACS Cent. Sci. 2022, 8, 361-369.
[78] Tang, Y.-J.; Zhang, S.-j.; Zhong, Z.-T.; Su, W.-M.; Zhao, Y.-D., Controllable Ion Transport Induced by pH Gradient in a Thermally Crosslinked Submicrochannel Heterogeneous Membrane. Analyst 2021, 146, 6815-6821.
[79] Ali, M.; Ramirez, P.; Nguyen, H. Q.; Nasir, S.; Cervera, J.; Mafe, S.; Ensinger, W., Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano 2012, 6, 3631-3640.
[80] Xiao, K.; Xie, G.; Zhang, Z.; Kong, X. Y.; Liu, Q.; Li, P.; Wen, L.; Jiang, L., Enhanced Stability and Controllability of an Ionic Diode Based on Funnel‐Shaped Nanochannels with an Extended Critical Region. Adv. Mater. 2016, 28, 3345-3350.
[81] Ge, Y.; Zhu, J.; Kang, M.; Xian, J.; An, Q.; Zhong, G., Ion Current Rectification in a Confined Conical Nanopore with High Solution Concentrations. Mol. Simul. 2016, 42, 942-947.
[82] Guo, Y.; Huang, H.; Li, Z.; Wang, X.; Li, P.; Deng, Z.; Peng, X., Sulfonated Sub-Nanochannels in a Robust Mof Membrane: Harvesting Salinity Gradient Power. ACS Appl. Mater. Interfaces 2019, 11, 35496-35500.
[83] Zhang, D.; Zhou, S.; Liu, Y.; Fan, X.; Zhang, M.; Zhai, J.; Jiang, L., Self-Assembled Porphyrin Nanofiber Membrane-Decorated Alumina Channels for Enhanced Photoelectric Response. ACS nano 2018, 12, 11169-11177.
[84] Li, R.; Jiang, J.; Liu, Q.; Xie, Z.; Zhai, J., Hybrid Nanochannel Membrane Based on Polymer/Mof for High-Performance Salinity Gradient Power Generation. Nano Energy 2018, 53, 643-649.
[85] Zhao, X.; Lu, C.; Yang, L.; Chen, W.; Xin, W.; Kong, X.-Y.; Fu, Q.; Wen, L.; Qiao, G.; Jiang, L., Metal Organic Framework Enhanced Speek/Spsf Heterogeneous Membrane for Ion Transport and Energy Conversion. Nano Energy 2021, 81, 105657.
[86] Hou, S.; Ji, W.; Chen, J.; Teng, Y.; Wen, L.; Jiang, L., Free‐Standing Covalent Organic Framework Membrane for High‐Efficiency Salinity Gradient Energy Conversion. Angew. Chem., Int. Ed. 2021, 60, 9925-9930.
[87] Lu, J.; Jiang, Y.; Xiong, T.; Yu, P.; Jiang, W.; Mao, L., Light-Regulated Nanofluidic Ionic Diodes with Heterogeneous Channels Stemming from Asymmetric Growth of Metal–Organic Frameworks. Anal. Chem. 2022, 94, 4328-4334.
[88] Li, Z. Q.; Zhu, G. L.; Mo, R. J.; Wu, M. Y.; Ding, X. L.; Huang, L. Q.; Wu, Z. Q.; Xia, X. H., Light‐Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal–Organic Framework Membranes. Angew. Chem., Int. Ed. 2022, e202202698.
[89] Gao, M.; Tsai, P. C.; Su, Y. S.; Peng, P. H.; Yeh, L. H., Single Mesopores with High Surface Charges as Ultrahigh Performance Osmotic Power Generators. Small 2020, 16, 2006013.
[90] Tsai, P.-C.; Su, Y.-S.; Gao, M.; Yeh, L.-H., Realization of Robust Mesoscale Ionic Diodes for Ultrahigh Osmotic Energy Generation at Mild Neutral pH. J. Mater. Chem. A 2021, 9, 20502-20509.
[91] Wu, Y.; Yang, G.; Lin, M.; Kong, X.; Mi, L.; Liu, S.; Chen, G.; Tian, Y.; Jiang, L., Continuously Tunable Ion Rectification and Conductance in Submicrochannels Stemming from Thermoresponsive Polymer Self‐Assembly. Angew. Chem. 2019, 131, 12611-12615.
[92] Schoch, R. B.; Han, J.; Renaud, P., Transport Phenomena in Nanofluidics. Rev. Mod. Phys. 2008, 80, 839.
[93] Kwak, R.; Kim, S. J.; Han, J., Continuous-Flow Biomolecule and Cell Concentrator by Ion Concentration Polarization. Anal. Chem. 2011, 83, 7348-7355.
[94] Yeh, L.-H.; Zhang, M.; Qian, S.; Hsu, J.-P.; Tseng, S., Ion Concentration Polarization in Polyelectrolyte-Modified Nanopores. J. Phys. Chem. C 2012, 116, 8672-8677.
[95] Kim, S. J.; Wang, Y.-C.; Lee, J. H.; Jang, H.; Han, J., Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel. Phys. Rev. Lett. 2007, 99, 044501.
[96] Cheng, L.-J.; Guo, L. J., Nanofluidic Diodes. Chem. Soc. Rev. 2010, 39, 923-938.
[97] Wei, C.; Bard, A. J.; Feldberg, S. W., Current Rectification at Quartz Nanopipet Electrodes. Anal. Chem. 1997, 69, 4627-4633.
[98] Siria, A.; Bocquet, M. L.; Bocquet, L., New Avenues for the Large-Scale Harvesting of Blue Energy. Nat. Rev. Chem. 2017, 1, 0091.
[99] Wang, Z. L.; Jiang, T.; Xu, L., Toward the Blue Energy Dream by Triboelectric Nanogenerator Networks. Nano Energy 2017, 39, 9-23.
[100] Zhang, R.; Wang, S. H.; Yeh, M. H.; Pan, C. F.; Lin, L.; Yu, R. M.; Zhang, Y.; Zheng, L.; Jiao, Z. X.; Wang, Z. L., A Streaming Potential/Current-Based Microfluidic Direct Current Generator for Self-Powered Nanosystems. Adv. Mater. 2015, 27, 6482-6487.
[101] Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C.; Niu, S. M.; Wang, Z. L., Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy. ACS Nano 2015, 9, 3324-3331.
[102] Liu, G. L.; Xiao, L. F.; Chen, C. Y.; Liu, W. L.; Pu, X. J.; Wu, Z. Y.; Hu, C. G.; Wang, Z. L., Power Cables for Triboelectric Nanogenerator Networks for Large-Scale Blue Energy Harvesting. Nano Energy 2020, 75, 104975.
[103] Liang, X.; Jiang, T.; Feng, Y. W.; Lu, P. J.; An, J.; Wang, Z. L., Triboelectric Nanogenerator Network Integrated with Charge Excitation Circuit for Effective Water Wave Energy Harvesting. Adv. Energy Mater. 2020, 10, 2002123.
[104] Liu, L.; Shi, Q. F.; Lee, C., A Novel Hybridized Blue Energy Harvester Aiming at All-Weather Iot Applications. Nano Energy 2020, 76, 105052.
[105] Logan, B. E.; Elimelech, M., Membrane-Based Processes for Sustainable Power Generation Using Water. Nature 2012, 488, 313-319.
[106] Macha, M.; Marion, S.; Nandigana, V. V. R.; Radenovic, A., 2d Materials as an Emerging Platform for Nanopore-Based Power Generation. Nat. Rev. Mater. 2019, 4, 588-605.
[107] Zhou, Y. H.; Jiang, L., Bioinspired Nanoporous Membrane for Salinity Gradient Energy Harvesting. Joule 2020, 4, 2244-2248.
[108] Zhang, Z.; Wen, L. P.; Jiang, L., Bioinspired Smart Asymmetric Nanochannel Membranes. Chem. Soc. Rev. 2018, 47, 322-356.
[109] Ma, T. J.; Janot, J. M.; Balme, S., Track-Etched Nanopore/Membrane: From Fundamental to Applications. Small Methods 2020, 4, 2000366.
[110] Li, C. Y.; Ma, F. X.; Wu, Z. Q.; Gao, H. L.; Shao, W. T.; Wang, K.; Xia, X. H., Solution-pH-Modulated Rectification of Ionic Current in Highly Ordered Nanochannel Arrays Patterned with Chemical Functional Groups at Designed Positions. Adv. Energy Mater. 2013, 23, 3836-3844.
[111] Yeh, H. C.; Chang, C. C.; Yang, R. J., Reverse Electrodialysis in Conical-Shaped Nanopores: Salinity Gradient-Driven Power Generation. RSC Adv. 2014, 4, 2705-2714.
[112] Cao, L.; Xiao, F.; Feng, Y.; Zhu, W.; Geng, W.; Yang, J.; Zhang, X.; Li, N.; Guo, W.; Jiang, L., Anomalous Channel-Length Dependence in Nanofluidic Osmotic Energy Conversion. Adv. Energy Mater. 2017, 27, 1604302.
[113] Long, R.; Kuang, Z. F.; Liu, Z. C.; Liu, W., Ionic Thermal up-Diffusion in Nanofluidic Salinity-Gradient Energy Harvesting. Natl. Sci. Rev. 2019, 6, 1266-1273.
[114] Long, R.; Luo, Z. Q.; Kuang, Z. F.; Liu, Z. C.; Liu, W., Effects of Heat Transfer and the Membrane Thermal Conductivity on the Thermally Nanofluidic Salinity Gradient Energy Conversion. Nano Energy 2020, 67, 104284.
[115] Liu, Y. C.; Yeh, L. H.; Zheng, M. J.; Wu, K. C. W., Highly Selective and High-Performance Osmotic Power Generators in Subnanochannel Membranes Enabled by Metal-Organic Frameworks. Sci. Adv. 2021, 7, eabe9924.
[116] Yeh, L. H.; Chen, F.; Chiou, Y. T.; Su, Y. S., Anomalous pH-Dependent Nanofluidic Salinity Gradient Power. Small 2017, 13, 1702691.
[117] Peng, P. H.; Yang, H. C. O.; Tsai, P. C.; Yeh, L. H., Thermal Dependence of the Mesoscale Ionic Diode: Modeling and Experimental Verification. ACS Appl. Mater. Interfaces 2020, 12, 17139-17146.
[118] Lin, C. Y.; Wong, P. H.; Wang, P. H.; Siwy, Z. S.; Yeh, L. H., Electrodiffusioosmosis-Induced Negative Differential Resistance in pH-Regulated Mesopores Containing Purely Monovalent Solutions. ACS Appl. Mater. Interfaces 2020, 12, 3198-3204.
[119] Lin, C. Y.; Yeh, L. H.; Siwy, Z. S., Voltage-Induced Modulation of Ionic Concentrations and Ion Current Rectification in Mesopores with Highly Charged Pore Walls. J. Phys. Chem. Lett. 2018, 9, 393-398.
[120] Yeh, L. H.; Zhang, M.; Qian, S., Ion Transport in a pH-Regulated Nanopore. Anal. Chem. 2013, 85, 7527-7534.
[121] Kosmulski, M., pH-Dependent Surface Charging and Points of Zero Charge. Iv. Update and New Approach. J. Colloid Interface Sci. 2009, 337, 439-448.
[122] Mei, L.; Yeh, L. H.; Qian, S., Buffer Anions Can Enormously Enhance the Electrokinetic Energy Conversion in Nanofluidics with Highly Overlapped Double Layers. Nano Energy 2017, 32, 374-381.
[123] Chung, Y. C.; Hsu, J. P.; Tseng, S., Electrodiffusioosmosis in a Solid-State Nanopore Connecting Two Large Reservoirs: Optimum Pore Size. J. Phys. Chem. C 2014, 118, 19498-19504.
[124] Plett, T.; Shi, W. Q.; Zeng, Y. H.; Mann, W.; Vlassiouk, I.; Baker, L. A.; Siwy, Z. S., Rectification of Nanopores in Aprotic Solvents - Transport Properties of Nanopores with Surface Dipoles. Nanoscale 2015, 7, 19080-19091.
[125] Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L., Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube. Nature 2013, 494, 455-458.
[126] Qian, S. Z.; Das, B.; Luo, X. B., Diffusioosmotic Flows in Slit Nanochannels. J. Colloid Interface Sci. 2007, 315, 721-730.
[127] Kosmulski, M., pH-Dependent Surface Charging and Points of Zero Charge Ii. Update. J. Colloid Interface Sci. 2004, 275, 214-224.
[128] Yeh, L.-H.; Chen, F.; Chiou, Y.-T.; Su, Y.-S., Anomalous pH-Dependent Nanofluidic Salinity Gradient Power. Small 2017, 13, 1702691.
[129] Yeh, L.-H.; Zhang, M.; Qian, S., Ion Transport in a pH-Regulated Nanopore. Anal. Chem. 2013, 85, 7527-7534.
[130] He, Y.; Tsutsui, M.; Fan, C.; Taniguchi, M.; Kawai, T., Controlling DNA Translocation through Gate Modulation of Nanopore Wall Surface Charges. ACS Nano 2011, 5, 5509-5518.
[131] Li, C. Y.; Ma, F. X.; Wu, Z. Q.; Gao, H. L.; Shao, W. T.; Wang, K.; Xia, X. H., Solution‐pH‐Modulated Rectification of Ionic Current in Highly Ordered Nanochannel Arrays Patterned with Chemical Functional Groups at Designed Positions. Adv. Funct. Mater. 2013, 23, 3836-3844.
[132] Yeh, L.-H.; Zhang, M.; Hu, N.; Joo, S. W.; Qian, S.; Hsu, J.-P., Electrokinetic Ion and Fluid Transport in Nanopores Functionalized by Polyelectrolyte Brushes. Nanoscale 2012, 4, 5169-5177.
[133] Yeh, L.-H.; Zhang, M.; Qian, S.; Hsu, J.-P., Regulating DNA Translocation through Functionalized Soft Nanopores. Nanoscale 2012, 4, 2685-2693.
[134] Wang, G.; Bohaty, A. K.; Zharov, I.; White, H. S., Photon Gated Transport at the Glass Nanopore Electrode. J. Am. Chem. Soc. 2006, 128, 13553-13558.
[135] Zhang, Z.; Kong, X.-Y.; Xie, G.; Li, P.; Xiao, K.; Wen, L.; Jiang, L., “Uphill” Cation Transport: A Bioinspired Photo-Driven Ion Pump. Sci. Adv. 2016, 2, e1600689.
[136] Zhang, M.; Hou, X.; Wang, J.; Tian, Y.; Fan, X.; Zhai, J.; Jiang, L., Light and pH Cooperative Nanofluidic Diode Using a Spiropyran‐Functionalized Single Nanochannel. Adv. Mater. 2012, 24, 2424-2428.
[137] Wen, L.; Ma, J.; Tian, Y.; Zhai, J.; Jiang, L., A Photo‐Induced, and Chemical‐Driven, Smart‐Gating Nanochannel. Small 2012, 8, 838-842.
[138] Li, T.; He, X.; Yu, P.; Mao, L., A Bioinspired Light‐Controlled Ionic Switch Based on Nanopipettes. Electroanalysis 2015, 27, 879-883.
[139] Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M., The Light-Controlling of Temperature-Responsivity in Stimuli-Responsive Polymers. Polym. Chem. 2019, 10, 5686-5720.
[140] Gupta, K. M.; Qiao, Z.; Zhang, K.; Jiang, J., Seawater Pervaporation through Zeolitic Imidazolate Framework Membranes: Atomistic Simulation Study. ACS Appl. Mater. Interfaces 2016, 8, 13392-13399.
[141] Hu, Z.; Chen, Y.; Jiang, J., Zeolitic Imidazolate Framework-8 as a Reverse Osmosis Membrane for Water Desalination: Insight from Molecular Simulation. J. Chem. Phys. 2011, 134, 134705.
[142] Zhang, H.; Hou, J.; Hu, Y.; Wang, P.; Ou, R.; Jiang, L.; Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Wang, H., Ultrafast Selective Transport of Alkali Metal Ions in Metal Organic Frameworks with Subnanometer Pores. Sci. Adv. 2018, 4, eaaq0066.
[143] Cao, L.; Chen, I.-C.; Chen, C.; Shinde, D. B.; Liu, X.; Li, Z.; Zhou, Z.; Zhang, Y.; Han, Y.; Lai, Z., Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes. J. Am. Chem. Soc. 2022, 144, 12400-12409.

無法下載圖示 全文公開日期 2025/09/21 (校內網路)
全文公開日期 2025/09/21 (校外網路)
全文公開日期 2025/09/21 (國家圖書館:臺灣博碩士論文系統)
QR CODE