簡易檢索 / 詳目顯示

研究生: 陳之正
Chih-Cheng Chen
論文名稱: 承載氧化銻鍍層多壁奈米碳管作負極之鋰離子混合電容器
The lithium ion hybrid capacitor loaded with a negative electrode of Sb2O3 coated MWCNT
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 許貫中
Kung-Chung Hsu
姜嘉瑞
Chia-Jui Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 鋰離子混合式電容器奈米碳管氧化作用無電電鍍能量密度鋰化程序
外文關鍵詞: lithium ion hybrid capacitor, carbon nanotube, oxidation, electroless plating, energy density, lithiation
相關次數: 點閱:366下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究製備鋰離子混合電容器,並量測其儲電特性,正極以高比表面積的活性碳(AC)作為活性材料,負極則搭配多壁奈米碳管鍍膜氧化銻活性材料(MWCNT/Sb2O3),及1.0 M LiPF6/DEC:EC:DMC= 1:1:1vol%有機電解液。
此研究重點在負極,負極材料之製備採用一維導電的多壁奈米碳管先進行低度表面氧化,再以無電電鍍的方式成功將氧化銻鍍於多壁奈米碳管上形成奈米碳管/氧化銻複合材料。表面氧化的目的在於幫助氧化銻能均勻還原在多壁奈米碳管表面上,雖然表面氧化會使多壁奈米碳管導電率下降,但若不進行表面氧化,氧化銻則無法附著在多壁奈米碳管上,而若過度氧化,則會嚴重破壞多壁奈米碳管的導電率,因此適當的表面氧化是必須的。
利用XRD分析得知價廉的無電電鍍法能沉積氧化銻於多壁奈米碳管,但未知兩者的附著情形。利用場發射掃描式電子顯微鏡(FESEM)拍攝多壁奈米碳管、無電電鍍後的多壁奈米碳管以及預鋰化後的多壁奈米碳管,觀察到無電電鍍沉積,屬於異相成核成長於奈米碳管表面,因此氧化銻顆粒狀均勻包覆多壁奈米碳管。
將兩種比例的多壁奈米碳管/氧化銻負極材料製備成電極片並進行預鋰化程序,前三圈電量分別約為1012 / 995 mAh g-1、500 / 450 mAh g-1、450 / 430 mAh g-1,造成電量不同的原因是因為氧化銻雖然能和鋰離子進行可逆電化學反應,但銻金屬再氧化回到氧化銻的進行不完全,所以可反覆進行充放電的容量隨著充放電圈數增加而逐漸減少。承載較高比例氧化銻的電極可逆性似乎高於較低比例的電極。
我們分別對正負極進行循環伏安法與充、放電測試,以此結果預測正負極之最佳重量比。預測結果顯示,AC:CNT/Sb2O3重量比在2:1之後,比電容值上升幅度趨於平緩,即使再增加活性碳,所能增加電容器儲電量相當有限,因此我們將兩種不同比例的負極材料與正極以重量比2:1組成電容器進行充、放電測試,結果顯示由氧化銻比例較多的負極組成的電容器有較高的比能量88.5 Wh kg-1 (0.1 A g-1),而氧化銻比例較少的負極其電容器有較高的比功率5.7 kW kg-1 (3.0 A g-1),而兩種電容器在0.1 A g-1時的比電容值分別為53.2 F g-1與51.7 F g-1。
由於負極材料是以反應速率較慢的鋰化反應來儲能,是鋰離子混合式電容器充放電的速率決定步驟,因此使用CNT/Sb2O3為負極之適合用低電流密度進行充放電。


We prepare a lithium hybrid ion capacitor, consisting of a negative electrode of CNT/Sb2O3 composite, activated carbon positive electrode, LiPF6/DEC:EC:DMC electrolyte, and try to measure its capability of energy storage.
The research efforts are focused on modification of the negative electrode, in which one-dimensional CNT has been oxidized and electroless plating antimony trioxide. The CNT surface is essentially hydrophobic, coating of antimony trioxide cannot be done homogeneously over the entire CNT assembly without oxidizing the CNT surface. On the other hand, if the CNT surface is oxidized excessively, the electrical conductivity of CNT shall be degraded.
XRD shows that peaks of CNT and antimony trioxide are both appeared, which means the electroless plating antimony trioxide on CNT surface is successful. SEM images indicate the antimony trioxide wrap the nanotube up and also suspend among the nanotube crosses.
The so-prepared two different mass ratio of CNT and antimony trioxide negative electrodes exhibit huge capacity, 1012/995 mAh g-1 in the first discharge cycle, 500/450 mAh g-1 in the second cycle, and 450/430 mAh g-1 in the third cycle. The high irreversible capacity indicates that not all lithium antimony alloy involves in the charge process. The sample with high ratio of antimony trioxide seems to have better reversibility than less ratio sample.
The energy and power densities of the lithium hybrid ion capacitor are measured with a mass ratio of 2:1 for positive and negative electrodes. The capacitor which contains high ratio of antimony trioxide negative electrode shows higher energy density 88.5 Wh kg-1 at 0.1 A g-1. However, the capacitor with less ratio of antimony trioxide negative electrode has higher power density 5.7 kW kg-1 at 3.0 A g-1. At current density 0.1 A g-1, the two kinds of capacitors demonstrate 53.2 F g-1 and 51.7 F g-1.
Lithiation and delithiation is an intrinsically slow process, determining the charge/discharge rate of capacitor. Hence the capacitor equipped with CNT/Sb2O3 negative is righteously operated at low current densities.

摘要 i ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧與理論基礎 3 2.1 電化學電容器(Electrochemical capacitors, EC) 3 2.1.1 電雙層電容器(Electrochemical Double-layer Capacitors, EDLC) 5 2.1.2 擬電容器 (Pseudocapacitor) 7 2.1.3 鋰離子混合式電容器 (Lithium-ion hybrid capacitors, LIHC) 8 2.1.4 鋰離子混合式電容器電解液[7] 11 2.2 鋰離子電池(Lithium ion battery, LIB) 13 第三章 實驗方法與步驟 14 3.1 實驗藥品耗材與儀器設備 14 3.1.1 正、負極材料製備 14 3.1.2 電性量測 18 3.1.3 電化學測試儀器及設備 19 3.1.4 材料鑑定及分析之儀器 20 3.2 實驗流程圖 21 3.2.1 正極漿料製備 21 3.2.2 負極材料合成 22 3.2.3 負極漿料製備 23 3.2.4 鋰離子混和式電容器之電極製備 23 3.3 實驗方法 24 3.3.1 鋰離子混合式電容器正極漿料製備 24 3.3.2 鋰離子混合式電容器負極材料合成 24 3.3.3 鋰離子混合式電容器負極漿料製備 26 3.3.4 電流收集器清洗及準備工作 27 3.4 電極材料鑑定與分析 28 3.4.1 場發射掃瞄式電子顯微鏡 28 3.4.2 D2 PHASER X光繞射儀 28 3.4.3 表面積及孔徑分析儀BET 29 3.5 電化學特性分析 30 3.5.1 循環伏安法 30 3.5.2 恆電流充、放電量測 30 第四章 結果與討論 32 4.1 電極材料性質測試 32 4.1.1 負極材料CNT/Sb2O3之形貌 32 4.1.2 負極材料成分分析 36 4.1.3 正極材料特性分析 41 4.2 單電極電化學儲電行為 45 4.2.1 預鋰化負極 45 4.2.2 負電極循環伏安分析 48 4.2.3 負電極不同電流下的電容量(rate capacity) 50 4.2.4 正極循環伏安法分析 53 4.3 鋰離子混合式電容器性質測試 54 4.3.1 正負極重量比電容器理論電容量計算 54 4.3.2 放電特性分析 60 4.3.3 恆電流充放電及比電容分析 62 4.3.4 交流阻抗分析 65 第五章 結論 67

[1] A. K. Shukla, A. Banerjee, M. K. Ravikumar, A. Jalajakshi, “Electrochemical capacitors: Technical challenges and prognosis for future markets”, Electrochimica Acta, vol. 84, pp. 165-173 (2012)
[2] R. Kötz, M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochimica Acta, vol. 45, pp. 2483-2498 (2000)
[3] M. Winter, R. J. Brodd, “What are batteries, fuel cells, and supercapacitors?”, Chemical Reviews, vol. 104, pp. 4245-4269 (2004)
[4] A. Burke, “Ultracapacitors: why, how, and where is the technology”, Journal of Power Sources, vol. 91, pp. 37-50 (2000)
[5] P. Sharma, T. S. Bhatti, “A review on electrochemical double-layer capacitors”, Energy Conversion and Management, vol. 51, pp. 2901-2912 (2010)
[6] E. Frackowiak, F. Béguin, “Carbon materials for the electrochemical storae of energy in capacitors”, Carbon, vol. 39, pp. 937-950 (2001)
[7] G. Wang, L. Zhang, J. Zhang, “A review of electrode materials for electrochemical supercapacitors”, Chemical Society Reviews, vol. 41, pp. 797-828 (2012)
[8] J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous ruthium oxide as an electrode material for electrochemical capacitors”, Journal of The Electrochemical Society, vol. 142, pp. 2699-2703 (1995)
[9] K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park, S. H. Chang, “Symmetric redox supercapacitor with conducting polyaniline electrodes”, Journal of Power Sources, vol. 103, pp. 305-309 (2002)
[10] A. Clemente, S. Panero, E. Spila, B. Scrosati, “Solid-state, polymer-based, redox capacitors”, Solid State Ionics, vol. 85,pp. 273-277 (1996)
[11] B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, pp. 613-620 (1999)
[12] A. Burke, “R&D considerations for the performance and application of electrochemical capacitors”, Electrochimica Acta, vol. 53, pp. 1083-1091 (2007)
[13] P. Simon, Y. Gogotsi, “Materials for electrochemical capacitors”, Nature materials, vol. 7, pp. 845-854 (2008)
[14] D. Qu, H. Shi, “Studies of activated carbons used in double-layer capacitors”, Journal of Power Sources, vol. 74, pp. 99-107 (1998)
[15] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, vol. 354, pp. 56-58 (1991)
[16] Q. L. Chen, K. H. Xue, W. Shen, F. F. Tao, S. Y. Yin, W. Xu, “Fabrication and Electrochemical Properties of Carbon Nanotube Array Electrode for Supercapacitors”, Electrochimica Acta ,vol. 24, pp. 4157-4161 (2004)
[17] C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, “High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes”, Applied Physics Letters , vol. 70, pp. 1480-1482 (1997)
[18] K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, “Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes”, Advanced Funtional Materials, vol. 11, pp. 387-392 (2001)
[19] A. R. Kamali, D. J. Fray, “Tin-based materials as advanced anode materials for lithium ion batteries: A review”, Reviews on Advanced materials science, vol.27, pp.14-24 (2011)
[20] M. N. Obrovac, L. Christensen, “Structural changes in silicon anodes during lithium insertion/extraction”, Electrochemical and Solid-State Letters, vol.7, pp. A93-A96 (2004)
[21] M. J. Lindsay, G. X. Wang, H. K. Liu, “Al-based anode materials for Li-ion batteries”, Journal of Power Sources, vol. 119-121, pp. 84-87 (2003)
[22] C. K. Chan, X. F. Zhang, Y. Cui, “High capacity Li ion battery anodes using Ge nanowires”, Nano Letters, vol. 8, pp. 307-309 (2008)
[23] R. A. Huggins, “Lithium alloy negative electrodes”, Journal of Power Sources, vol. 81-82, pp. 13-19 (1999)
[24] M. Z. Xue, Z. W. Fu, “Electrochemical reaction of lithium with nanostructured thin film of antimony trioxide”, Electrochemistry Communications, vol. 8, pp. 1250-1256 (2006)
[25] M. Dahbi, F. Ghamouss, T. V. François, D. Lemordant, M. Anouti, “Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage”, Journal of Power Sources, vol. 196, pp. 9743-9750 (2011)
[26] Z. Chen, W. Q. Lu, J. Liu, K. Amine, “LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries”, Electrochimica Acta, vol. 51, pp. 3322-3326 (2006)
[27] Atsuo SENDA, Yoshihiko TAKANO, Takuji NAKAGAWA, “Formation of Antimony Film by Electroless Plating”, Transactions of Nonferrous Metals Society of China, vol. 43, pp. 83-88 (1992)

QR CODE