簡易檢索 / 詳目顯示

研究生: Vinothini Arunagiri
Vinothini Arunagiri
論文名稱: Development of biopolymer composites absorbent in membrane and hemostatic application
Development of biopolymer composites absorbent in membrane and hemostatic application
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 賴君義
Juin-Yih Lai
鍾台生
Chung Tai-Shung
甄明阳
Jen-Ming Yang
李榮和
Rong-Ho Lee
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 137
中文關鍵詞: 聚己內酯(PCL)聚-DL-乳酸(PDLLA)油吸附劑三聚氰胺分離明膠卡拉膠單寧酸微粒止血膨潤比
外文關鍵詞: PCL/PDLLA, Hydrophobic sorbent, K-Carrageenan, Microparticles,, Hemostasis,, swelling ratio
相關次數: 點閱:259下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著世界的快速發展所衍生之汙染問題日趨嚴重,特別是水汙染方面更是對於自然生物影響巨大。 而多孔性合成薄膜由於生產成本低廉及所需體積小等優勢,在膜分離領域受到了廣泛的應用。其在設計較常見的分別為促進水運輸的親水性膜,以及抑制水運輸的疏水性膜,而後者又在氣體分離、氣體吸收、過濾、滲透蒸發及蒸餾等方面有更多元的應用。
    過去,研究人員對於水分離過程所應用之膜,更多關注在增加透水性以及汙垢控制方面,因此疏水性膜的開發也相對較少。而海中的原油洩漏,對於生物體的呼吸、進食及溫度調節等方面帶來了重大負面影響,是亟需解決的問題。因此,製備疏水且降解性多孔聚合物吸附劑,可進行對環境較無害之優勢,近期便受到了更多的重視及開發。
    在第一部分之研究中,使用冷凍乾燥造技術來對市售3D多孔三聚氰胺海綿的孔隙,進行生物可降解PCL/PDLLA (混摻比,90:10、85:15 & 80:20) 的填充,並評估原油洩漏處理的效果。在上述各比例的測試中,PCL/PDLLA (80:20) 改質三聚氰胺吸附劑在FE-SEM中觀察到了多孔互連的結構; 在接觸角分析中展現出較高的疏水性 (162° (WCA) & 180° (UOWCA)) ,並且具備超親油的濕潤性。此外,三聚氰胺海綿和PCL/PDLLA混合物之間的各項物理化學相互作用力也通過FT-IR、拉曼及XRD進行析,同時亦使用了拉伸試驗,並顯示出92%的伸長率。而PCL/PDLLA(80:20)改性三聚氰胺吸附劑對不同的黏度的油如正己烷、正辛烷、大豆油、原油和機油等,表現出約3.3-8.8 g/g的吸油能力。此外,PCL/PDLLA (80:20) 改性三聚氰胺吸附劑在重力作用下對油包水 (W/O) 乳液的分離也有99.5 %的去油效率,通量約為560.737 L m-2h-1。因此,可生物降解的PCL/PDLLA(80:20)改性三聚氰胺吸附劑可以作為一種較為環保的漏油處理吸附劑和油包水 (W/O) 乳液的去油劑,同時具備較佳的化學穩定性、機械穩定性和重複利用性。
    另一存在的嚴重性議題,為全球全因戰爭、事故或手術等狀況,所造成的不受控出血問題,其涵蓋約全球死亡率的40%。因此,具備生物相容性的止血材料的開發也在持續進行中,現階段雖已有許多研究,但能進行快速凝血的仍較少。而若將其製備為粉末型態,則能更好地適應不規則形的傷口,及大面積的醫療止血等優勢。
    在第二個研究中,是要通過製備粉末微粒來促進凝血之過程。是透過使用吐溫80(Tween 80) 的油包水(W/O) 乳化體系,來製備使用氫鍵及聚電解質作用力,所構成之生物相容性的明膠-單寧酸-κ-卡拉膠(GTC)微粒。製備的GTC微粒,其在46微米尺寸下,具備了約273%的體積膨脹率。 在NIH 3T3的細胞測試中表面出大於80%的生物相容性,溶血性試驗中表現出小於5%的血液相容性,同時伴隨較低的凝血指數。值得重視的是,GTC微粒能在50秒內誘導BALB/c雌性小鼠股動脈快速止血,失血量為46毫克,明顯優於對照組(凝血時間:250秒;出血量:259毫克),並在解決出血控制方面展現出了臨床應用之潛力。


    Global development of pollution in water becomes serious issue in the current world and has a great impact on living organisms, especially in ocean waters organisms. Due to the low production cost and small occupied space, the porous membrane has been widely used in the membrane separation process. Especially, porous polymeric membranes are developed with high hydrophilicity or hydrophobicity either to generate or prevent the passage of water, respectively. The vast applications oriented to hydrophobic membranes are filtration, gas separation, gas absorption, pervaporation, and distillation.
    Since, the researcher major focal point was to enhance the water permeability and fouling control in aqueous separation. The existence of hydrophobic membrane becomes relatively low in the past. In other hand, consequence of heavy oil spillage (ex. Crude oil) in ocean creates major pollution and escorts physical smothering like respiration, feeding, and thermoregulation to the living organism. Hence, recently, the existence of hydrophobic polymeric sorbent occurs and provided to be a significant resource to clean heavy oil spills. Especially, the eco-friendly polymer acts as a requisite compostable oil sorbent, due to the beneficiary degradation of non-toxic elements in water resource.
    Thus, I have designed my first experiment to investigate oil spill cleaning application using three-dimensional commercial porous melamine sponge’s substrate, which was modified with pore-filling eco-friendly PCL/PDLLA polymer blended agent in various ratios such as 90:10, 85:15 & 80:20, through dip coating process followed by inexpensive freeze-drying technique. In the above-fabricated sorbent ratios, PCL/PDLLA (80:20) sorbent displayed reliable emergence of interconnected porous structure in the FE-SEM morphology analyzer. Further, the surface wettability of PCL/PDLLA (80:20) modified sorbent have executed high super-oleophilic wettability along with greater hydrophobicity with a water contact angle in air at 162°(WCA) and under oil at 180°(UOWCA) in water angle analyzer. Furthermore, PCL/PDLLA modified sorbent’s physicochemical characteristics was determined through spectroscopic techniques like Fourier Transform-Infra Red and Raman mapping spectroscopy. Despite the previous characteristics, the crystalline and mechanical behavior of PCL/PDLLA (80:20) modified sorbent was confirmed through X-ray diffraction study along with 92% elongation in tensile test. Additionally, the fabricated PCL/PDLLA (80:20) modified sorbent exhibited moderate oil absorption capacity of about 3.3-8.8g/g in various viscous oils such as n-hexane, n-octane, soybean oil, crude oil, and motor oil. In addition, PCL/PDLLA (80:20) modified melamine sorbent also escorted 99% oil rejection efficiency with the flux of about 560 L m-2h-1 under gravity for W/O emulsion separation. Therefore, I would like to emphasize that biodegradable PCL/PDLLA (80:20) modified melamine sorbent can act as an eco-friendly oil spill cleaning sorbent and oil rejector from W/O emulsion with suitable chemical, mechanical stability, and reusability.
    Here comes another global serious issue is excessive uncontrolled bleeding during battlefield, civilian accidents, and surgery which causes humans to account for 40% mortality worldwide. Hence, the development of biocompatible hemostatic materials to control hemorrhage has become a fundamental research problem in the biomedicine community. Though existence of various form of hemostatic material occurs, still lacks in executing rapid coagulation cascade. Consequently, the use of powder materials in hemostasis has been emerged with several benefits like adaptability to different irregular wounds, large surface area, improved efficacy, and safety in medical uses.
    Hence, in our second study, we aimed to accelerate an improved coagulation cascade through powder microparticles. Therefore, we prepared biocompatible gelatin-tannic acid-κ-carrageenan (GTC) microparticles via polyelectrolyte interactions as well as hydrogen bonding from tannic acid using a facile Tween 80 stabilized water-in-oil (W/O) emulsion method. In addition, the formulated GTC microparticles were optimized and displayed a change in volume-swelling ratio of about 273% for a particle size of 46 µm. Subsequently, GTC microparticles have exhibited >80% biocompatibility in NIH 3T3 cells, <5% hemocompatibility in hemolysis ratio tests along with lower blood coagulation index. Notably, the GTC microparticles induced rapid hemostasis in 50 s with blood loss of ⸟46 mg in the femoral artery of BALB/c female mice, which was significantly better than the control group (blood clot time:250s; blood loss: 259 mg). Thus, our study findings propose that GTC microparticles may play a promising clinical role to tackle hemorrhage control

    摘要 ii ABSTRACT iv ACKNOWLEDGMENTS vii TABLE OF CONTENT viii LIST OF FIGURES xi LIST OF TABLES xiii LIST OF SCHEMES xiv LIST OF ACRONYMS xv CHAPTER 1 16 1.Introduction 16 1.1 Background of the study 17 1.1.1. First study 17 1.1.2. Second study: 19 CHAPTER 2 22 2. Literature survey 22 2.1: Impact of Global Issues on mortality of Living organisms 22 2.1.1: Water pollution 22 2.1.2: Hemorrhage: 23 2.2: Resolving water pollution and hemorrhage: 24 2.2.1. Membrane separation processes 24 2.2.2: Hemostasis and Steps of Hemostasis: 27 2.2.3: Hemostatic agent 29 2.3: significance of Porous and microparticles form of absorbent in water purification and hemorrhage control 33 2.3.1. Mechanism of porous membrane and microparticles in separation process and hemostasis: 36 2.4: Biopolymer as 38 CHAPTER 3 43 3. Objective of the Study 43 3.1. General objective 43 3.2. Specific objectives 43 3.3 Chemicals, Reagents and Instruments 44 3.3.1. Chemicals and Reagents 44 3.3.2. Instruments 45 3.4 Statistical Analysis 46 CHAPTER 4 47 4.Eco-friendly PCL/PDLLA absorbent in Oil-Spill Cleaning and Emulsified Oil separator 47 4.1. Introduction 47 4.2. Experimental Section 51 4.2.1. Fabrication of PCL/PDLLA melamine sorbent via dip-coating freeze dry method 52 4.2.2. Physicochemical characteristics 52 4.2.3. Stability of the PCL/PDLLA melamine sorbents 53 4.2.4. Oil absorption experiment in oil spill cleaning 53 4.2.5. Gravity driven surfactant stabilized W/O emulsion preparation and separation 54 4.2.6. Repeatability/Reusability 54 4.3. Results and Discussion 54 4.3.1. Optimized PCL/PDLLA Composition 54 4.3.2. Electron microscopy structural view of PCL/PDLLA Melamine sorbent: 57 4.3.3. Physicochemical characteristic of PCL/PDLLA Melamine sorbent: 59 4.3.4. PCL/PDLLA melamine act as sorbent in oil absorption experiment and chemical stability. 65 4.3.5. PCL/PDLLA Melamine act as membrane in gravity driven water in oil emulsion separation 69 4.3.6. Repeatability/reusability test in PCL/PDLLA (80:20) Melamine Sorbent 71 4.3.7. Wettability Performance in PCL/PDLLA (80:20) melamine sorbent 72 4.4. Conclusion 74 CHAPTER 5 80 5. Polyelectrolyte Gelatin-Tannic acid-κ-Carrageenan microparticle absorbent as hemostatic agents 80 5.1. Introduction 80 5.2. Experimental Section 82 5.2.1 Fabrication method of polysaccharide microparticles 82 5.2.2 Volume swelling properties of the microparticles 84 5.2.3 Rehydration rate 84 5.2.4 In vitro cytotoxicity assays 85 5.2.5 Hemocompatibility 86 5.2.6. Hemostatic Assay in vitro 87 5.2.7 Hemostasis in vivo 87 5.3. Results and Discussion 89 5.3.1 Optimization of Gelatin, Tannic acid, and Carrageenan components to obtain stable GTC microparticles 89 5.3.2 Morphology, poly electrolyte interaction, and surface charge examination in GTC microparticle: 92 5.3.3 Volume swelling ratio and rehydration rate of GTC microparticles: 96 5.3.4. Hemocompatibility of GTC microparticle: 100 5.3.5 Hemostasis in vitro 102 5.3.6 Biocompatibility and live cell/ dead cell imaging of GTC microparticles 103 5.3.7 In vivo femoral artery potential hemorrhage control of GTCm microparticle: 106 5.3.8: In vivo wound healing effects, healing rate and histopathology study: 109 5.4 Conclusions 115 CHAPTER 6 116 6.General Summary and Future Perspectives 116 6.1. Summary 116 6.2. Future perspectives and recommendations 117 REFERRENCES 118 Appendix 127 Appendix A: Supplementary Information: 127 Appendix B: Publications: 137 Appendix C: International Conference: 138

    [1] E. Obotey Ezugbe, S. Rathilal, Membrane Technologies in Wastewater Treatment: A Review, Membranes (Basel), 10 (2020).
    [2] P. Chowdhary, R.N. Bharagava, S. Mishra, N. Khan, Role of industries in water scarcity and its adverse effects on environment and human health, in: Environmental Concerns and Sustainable Development, Springer, 2020, pp. 235-256.
    [3] K. Abuhasel, M. Kchaou, M. Alquraish, Y. Munusamy, Y.T. Jeng, Oily wastewater treatment: overview of conventional and modern methods, challenges, and future opportunities, Water, 13 (2021) 980.
    [4] J.G. Jacangelo, R.R. Trussell, M. Watson, Role of membrane technology in drinking water treatment in the United States, Desalination, 113 (1997) 119-127.
    [5] N.N. Li, A.G. Fane, W.W. Ho, T. Matsuura, Advanced membrane technology and applications, John Wiley & Sons, 2011.
    [6] S. Alzahrani, A.W. Mohammad, Challenges and trends in membrane technology implementation for produced water treatment: A review, Journal of Water Process Engineering, 4 (2014) 107-133.
    [7] S. Munirasu, M.A. Haija, F. Banat, Use of membrane technology for oil field and refinery produced water treatment—A review, Process safety and environmental protection, 100 (2016) 183-202.
    [8] H. Abdelrazeq, M. Khraisheh, H.M. Ashraf, P. Ebrahimi, A. Kunju, Sustainable Innovation in Membrane Technologies for Produced Water Treatment: Challenges and Limitations, Sustainability, 13 (2021) 6759.
    [9] T. Peters, Membrane technology for water treatment, Chemical engineering & technology, 33 (2010) 1233-1240.
    [10] R. Singh, N. Hankins, Emerging membrane technology for sustainable water treatment, Elsevier, 2016.
    [11] A.A. Sapalidis, Porous Polyvinyl alcohol membranes: Preparation methods and applications, Symmetry, 12 (2020) 960.
    [12] A. Shiohara, B. Prieto-Simon, N.H. Voelcker, Porous polymeric membranes: fabrication techniques and biomedical applications, Journal of Materials Chemistry B, 9 (2021) 2129-2154.
    [13] D. Saeki, Y. Nagashima, I. Sawada, H. Matsuyama, Effect of hydrophobicity of polymer materials used for water purification membranes on biofilm formation dynamics, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506 (2016) 622-628.
    [14] X. Dong, D. Lu, T.A. Harris, I.C. Escobar, Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development, Membranes, 11 (2021) 309.
    [15] J.B. Hamm, A. Ambrosi, L.D. Pollo, N.R. Marcilio, I.C. Tessaro, Thin polymer layer-covered porous alumina tubular membranes prepared via a dip-coating/phase-inversion process, Materials Chemistry and Physics, 265 (2021) 124511.
    [16] Q. Shang, J. Chen, C. Liu, Y. Hu, L. Hu, X. Yang, Y. Zhou, Facile fabrication of environmentally friendly bio-based superhydrophobic surfaces via UV-polymerization for self-cleaning and high efficient oil/water separation, Progress in Organic Coatings, 137 (2019).
    [17] Z. Ding, Z. Liu, C. Xiao, Excellent performance of novel superhydrophobic composite hollow membrane in the vacuum membrane distillation, Separation and Purification Technology, 268 (2021).
    [18] Y. Shao, J. Zhao, Y. Fan, Z. Wan, L. Lu, Z. Zhang, W. Ming, L. Ren, Shape memory superhydrophobic surface with switchable transition between “Lotus Effect” to “Rose Petal Effect”, Chemical Engineering Journal, 382 (2020) 122989.
    [19] S. Xu, Q. Wang, N. Wang, Eco-friendly fabrication of superhydrophobic surface with anti-corrosion by transferring dendrite-like structures to aluminum substrate, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 595 (2020) 124719.
    [20] A.R. Siddiqui, W. Li, F. Wang, J. Ou, A. Amirfazli, One-step fabrication of transparent superhydrophobic surface, Applied Surface Science, 542 (2021) 148534.
    [21] K. Ellinas, P. Dimitrakellis, P. Sarkiris, E. Gogolides, A Review of Fabrication Methods, Properties and Applications of Superhydrophobic Metals, Processes, 9 (2021) 666.
    [22] Q. Wang, G. Sun, Q. Tong, W. Yang, W. Hao, Fluorine-free superhydrophobic coatings from polydimethylsiloxane for sustainable chemical engineering: Preparation methods and applications, Chemical Engineering Journal, (2021) 130829.
    [23] O. Habimana, A.J.C. Semião, E. Casey, The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes, Journal of Membrane Science, 454 (2014) 82-96.
    [24] W. Gao, H. Liang, J. Ma, M. Han, Z.-l. Chen, Z.-s. Han, G.-b. Li, Membrane fouling control in ultrafiltration technology for drinking water production: A review, Desalination, 272 (2011) 1-8.
    [25] W. Guo, H.H. Ngo, J. Li, A mini-review on membrane fouling, Bioresour Technol, 122 (2012) 27-34.
    [26] A. Malik, F.U. Rehman, K.U. Shah, S.S. Naz, S. Qaisar, Hemostatic strategies for uncontrolled bleeding: A comprehensive update, Journal of Biomedical Materials Research Part B: Applied Biomaterials, (2021).
    [27] A. Tran, T. Lamb, M. Taljaard, S.M. Fernando, K. Inaba, E.E. Moore, J. Lampron, D. Demetriades, E.R. Haut, C. Vaillancourt, Current practices and challenges in assessing traumatic hemorrhage: An international survey of trauma care providers, Journal of Trauma and Acute Care Surgery, 90 (2021) e95-e100.
    [28] H.B. Alam, D. Burris, J.A. DaCorta, P. Rhee, Hemorrhage control in the battlefield: role of new hemostatic agents, Military medicine, 170 (2005) 63-69.
    [29] A.M. Behrens, M.J. Sikorski, P. Kofinas, Hemostatic strategies for traumatic and surgical bleeding, Journal of Biomedical Materials Research Part A, 102 (2014) 4182-4194.
    [30] H.E. Achneck, B. Sileshi, R.M. Jamiolkowski, D.M. Albala, M.L. Shapiro, J.H. Lawson, A comprehensive review of topical hemostatic agents: efficacy and recommendations for use, Annals of surgery, 251 (2010) 217-228.
    [31] M.D. Palm, J.S. Altman, Topical hemostatic agents: a review, Dermatologic Surgery, 34 (2008) 431-445.
    [32] A.J. Tompeck, M. Dowling, S.B. Johnson, P.S. Barie, R.J. Winchell, D. King, T.M. Scalea, L. Britt, M. Narayan, A comprehensive review of topical hemostatic agents: The good, the bad, and the novel, Journal of Trauma and Acute Care Surgery, 88 (2020) e1-e21.
    [33] C. Zheng, Q. Bai, W. Wu, K. Han, Q. Zeng, K. Dong, Y. Zhang, T. Lu, Study on hemostatic effect and mechanism of starch-based nano-microporous particles, International Journal of Biological Macromolecules, 179 (2021) 507-518.
    [34] M. Zhou, L. Shen, X. Lin, Y. Hong, Y. Feng, Design and pharmaceutical applications of porous particles, RSC advances, 7 (2017) 39490-39501.
    [35] L. Yu, X. Shang, H. Chen, L. Xiao, Y. Zhu, J. Fan, A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat, Nature communications, 10 (2019) 1-9.
    [36] C. Gan, H. Hu, Z. Meng, X. Zhu, R. Gu, Z. Wu, H. Wang, D. Wang, H. Gan, J. Wang, Characterization and hemostatic potential of two kaolins from Southern China, Molecules, 24 (2019) 3160.
    [37] C. Dai, Y. Yuan, C. Liu, J. Wei, H. Hong, X. Li, X. Pan, Degradable, antibacterial silver exchanged mesoporous silica spheres for hemorrhage control, Biomaterials, 30 (2009) 5364-5375.
    [38] Y. Chen, L. Wu, P. Li, X. Hao, X. Yang, G. Xi, W. Liu, Y. Feng, H. He, C. Shi, Polysaccharide based hemostatic strategy for ultrarapid hemostasis, Macromolecular bioscience, 20 (2020) 1900370.
    [39] X. Yang, W. Liu, N. Li, M. Wang, B. Liang, I. Ullah, A.L. Neve, Y. Feng, H. Chen, C. Shi, Design and development of polysaccharide hemostatic materials and their hemostatic mechanism, Biomaterials science, 5 (2017) 2357-2368.
    [40] H. Hu, F.-J. Xu, Rational design and latest advances of polysaccharide-based hydrogels for wound healing, Biomaterials science, 8 (2020) 2084-2101.
    [41] M.H. MacDonald, A.Y. Wang, J.W. Clymer, R.W. Hutchinson, R. Kocharian, An in vivo comparison of the efficacy of hemostatic powders, using two porcine bleeding models, Medical devices (Auckland, NZ), 10 (2017) 273.
    [42] L.H.a.A. Bryh, WATER POLLUTION - methods and criteria to rank, model and remediate chemical threats to aquatic ecosystems, 172.
    [43] P. Goel, Water pollution: causes, effects and control, New Age International, 2006.
    [44] R. Afroz, M.M. Masud, R. Akhtar, J.B. Duasa, Water Pollution: Challenges and Future Direction for Water Resource Management Policies in Malaysia, Environment and Urbanization Asia, 5 (2014) 63-81.
    [45] J. van Gijn, R.S. Kerr, G.J.E. Rinkel, Subarachnoid haemorrhage, The Lancet, 369 (2007) 306-318.
    [46] A.D.M. Adnan I Qureshi, Daniel F Hanley, Intracerebral haemorrhage, 373 1632-1644.
    [47] A. Malik, F.U. Rehman, K.U. Shah, S.S. Naz, S. Qaisar, Hemostatic strategies for uncontrolled bleeding: A comprehensive update, J Biomed Mater Res B Appl Biomater, (2021).
    [48] M. Kim, H. Cho, Damage control strategy in bleeding trauma patients, Acute Crit Care, 35 (2020) 237-241.
    [49] M. Maegele, The Diagnosis and Treatment of Acute Traumatic Bleeding and Coagulopathy, Dtsch Arztebl Int, 116 (2019) 799-806.
    [50] N. Hilal, M. Khayet, C.J. Wright, Membrane Modification Technology and applications.
    [51] B. Smitha, Separation of organic?organic mixtures by pervaporation?a review*1, Journal of Membrane Science, 241 (2004) 1-21.
    [52] N. Acharya, V. Kulshrestha, K. Awasthi, A. Jain, M. Singh, Y. Vijay, Hydrogen separation in doped and blend polymer membranes, International Journal of Hydrogen Energy, 33 (2008) 327-331.
    [53] C. Bhattacharjee, V.K. Saxena, S. Dutta, Fruit juice processing using membrane technology: A review, Innovative Food Science & Emerging Technologies, 43 (2017) 136-153.
    [54] J. Chau, K.K. Sirkar, K.J. Pennisi, G. Vaseghi, L. Derdour, B. Cohen, Novel perfluorinated nanofiltration membranes for isolation of pharmaceutical compounds, Separation and Purification Technology, 258 (2021).
    [55] M.A. Brza, S.B. Aziz, H. Anuar, S.M. Alshehri, F. Ali, T. Ahamad, J.M. Hadi, Characteristics of a Plasticized PVA-Based Polymer Electrolyte Membrane and H(+) Conductor for an Electrical Double-Layer Capacitor: Structural, Morphological, and Ion Transport Properties, Membranes (Basel), 11 (2021).
    [56] N.H. Ismail, W.N.W. Salleh, A.F. Ismail, H. Hasbullah, N. Yusof, F. Aziz, J. Jaafar, Hydrophilic polymer-based membrane for oily wastewater treatment: A review, Separation and Purification Technology, 233 (2020).
    [57] L. Ni, Q. Shi, M. Wu, J. Ma, Y. Wang, Fouling behavior and mechanism of hydrophilic modified membrane in anammox membrane bioreactor: Role of gel layer, Journal of Membrane Science, 620 (2021).
    [58] H. Shi, Y. He, Y. Pan, H. Di, G. Zeng, L. Zhang, C. Zhang, A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation, Journal of Membrane Science, 506 (2016) 60-70.
    [59] J.-G. Lu, Y.-F. Zheng, M.-D. Cheng, Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption, Journal of Membrane Science, 308 (2008) 180-190.
    [60] M. Han, Y. Wang, J. Yao, C. Liu, J.W. Chew, Y. Wang, Y. Dong, L. Han, Electrically conductive hydrophobic membrane cathode for membrane distillation with super anti-oil-fouling capability: Performance and mechanism, Desalination, 516 (2021).
    [61] M.M.C. Catherine Juckera, Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes Journal of Membrane Science 97 37-52 [62] Z. Yang, T. Hou, J. Ma, B. Yuan, Z. Tian, W. Yang, N.J.D. Graham, Role of moderately hydrophobic chitosan flocculants in the removal of trace antibiotics from water and membrane fouling control, Water Res, 177 (2020) 115775.
    [63] J. Li, L.-F. Ren, J. Shao, Y. Tu, Z. Ma, Y. Lin, Y. He, Fabrication of triple layer composite membrane and its application in membrane distillation (MD): Effect of hydrophobic-hydrophilic membrane structure on MD performance, Separation and Purification Technology, 234 (2020).
    [64] X. Zhang, C. Liu, J. Yang, C.-Y. Zhu, L. Zhang, Z.-K. Xu, Nanofiltration membranes with hydrophobic microfiltration substrates for robust structure stability and high water permeation flux, Journal of Membrane Science, 593 (2020).
    [65] H.N. Hoang, T.A. Hill, D.P. Fairlie, Connecting Hydrophobic Surfaces in Cyclic Peptides Increases Membrane Permeability, Angew Chem Int Ed Engl, 60 (2021) 8385-8390.
    [66] Z. Wang, S. Ji, F. He, M. Cao, S. Peng, Y. Li, One-step transformation of highly hydrophobic membranes into superhydrophilic and underwater superoleophobic ones for high-efficiency separation of oil-in-water emulsions, Journal of Materials Chemistry A, 6 (2018) 3391-3396.
    [67] S.R. Khairkar, A.V. Pansare, A.A. Shedge, S.Y. Chhatre, A.K. Suresh, S. Chakrabarti, V.R. Patil, A.A. Nagarkar, Hydrophobic interpenetrating polyamide-PDMS membranes for desalination, pesticides removal and enhanced chlorine tolerance, Chemosphere, 258 (2020) 127179.
    [68] S. Pourshahrestani, E. Zeimaran, N.A. Kadri, N. Mutlu, A.R. Boccaccini, Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing, Adv Healthc Mater, 9 (2020) e2000905.
    [69] H. Khoshmohabat, S. Paydar, H.M. Kazemi, B. Dalfardi, Overview of Agents Used for Emergency Hemostasis, Trauma Mon, 21 (2016) e26023.
    [70] L. Wang, X. You, C. Dai, T. Tong, J. Wu, Hemostatic nanotechnologies for external and internal hemorrhage management, Biomater Sci, 8 (2020) 4396-4412.
    [71] F.F.a.Y.D.P.B. Natália de Campos, Bleeding in Dental Surgery, 2.
    [72] S.A. Nunes, H.L.F. Magalhaes, R.S. Gomez, A.F. Vilela, M.J. Figueiredo, R.S. Santos, F.D. Rolim, R.A.A. Souza, S.R. Farias Neto, A.G.B. Lima, Oily Water Separation Process Using Hydrocyclone of Porous Membrane Wall: A Numerical Investigation, Membranes (Basel), 11 (2021).
    [73] L. Ding, J. Su, Z. Cao, P. Zhu, Y. Liu, Preparation of Super-Hydrophobic 3D Porous Nanocomposites by One Step Reaction at Room Temperature for Water Treatment, Coatings, 11 (2021).
    [74] T.A. Saleh, N. Baig, F.I. Alghunaimi, N.W. Aljuryyed, A flexible biomimetic superhydrophobic and superoleophilic 3D macroporous polymer-based robust network for the efficient separation of oil-contaminated water, RSC Advances, 10 (2020) 5088-5097.
    [75] S. Zhang, J. Li, S. Chen, X. Zhang, J. Ma, J. He, Oxidized cellulose-based hemostatic materials, Carbohydr Polym, 230 (2020) 115585.
    [76] L. Li, Y. Du, Z. Yin, L. Li, H. Peng, H. Zheng, A. Yang, H. Li, G. Lv, Preparation and the hemostatic property study of porous gelatin microspheres both in vitro and in vivo, Colloids Surf B Biointerfaces, 187 (2020) 110641.
    [77] M. Pan, Z. Tang, J. Tu, Z. Wang, Q. Chen, R. Xiao, H. Liu, Porous chitosan microspheres containing zinc ion for enhanced thrombosis and hemostasis, Mater Sci Eng C Mater Biol Appl, 85 (2018) 27-36.
    [78] M. Ghorbani, M. Hassan Vakili, E. Ameri, Fabrication and evaluation of a biopolymer-based nanocomposite membrane for oily wastewater treatment, Materials Today Communications, 28 (2021).
    [79] X.Q. Zhao, F. Wahid, J.X. Cui, Y.Y. Wang, C. Zhong, Cellulose-based special wetting materials for oil/water separation: A review, Int J Biol Macromol, 185 (2021) 890-906.
    [80] A.S. Yongsheng Gao, Nikolaos Kokoroskos, Anvay Ukidve, Zongmin Zhao, Shihui Guo, Robert Flaumenhaft, Anirban Sen Gupta, Noelle Saillant, Samir Mitragotri, A polymer-based systemic hemostatic agent, SCIENCE ADVANCES, (31 July 2020) 12.
    [81] S. Naseem, C.-M. Wu, T.-Z. Xu, C.-C. Lai, S.-P. Rwei, Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited TiO2/graphene oxide, Polymers, 10 (2018) 746.
    [82] C.E. Boyd, Water Quality Protection, in: Water Quality, Springer, 2020, pp. 379-409.
    [83] R. Prince, R. Lessard, J. Clark, Bioremediation of marine oil spills, Oil & gas science and technology, 58 (2003) 463-468.
    [84] M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, S. Kokot, Porous materials for oil spill cleanup: a review of synthesis and absorbing properties, Journal of Porous materials, 10 (2003) 159-170.
    [85] P.E. Ndimele, The political ecology of oil and gas activities in the Nigerian aquatic ecosystem, Academic Press, 2017.
    [86] Y. Ding, W. Xu, Y. Yu, H. Hou, Z. Zhu, One-step preparation of highly hydrophobic and oleophilic melamine sponges via metal-ion-induced wettability transition, ACS applied materials & interfaces, 10 (2018) 6652-6660.
    [87] J. Idris, G. Eyu, Z. Ahmad, C. Chukwuekezie, Oil spills and sustainable cleanup approach, Australian Journal of Basic and Applied Sciences, 7 (2013) 272-280.
    [88] Y. Zhang, Q. Zhang, R. Zhang, S. Liu, Y. Zhou, A superhydrophobic and elastic melamine sponge for oil/water separation, New Journal of Chemistry, 43 (2019) 6343-6349.
    [89] V.R. Pereira, A.M. Isloor, A. Al Ahmed, A. Ismail, Preparation, characterization and the effect of PANI coated TiO 2 nanocomposites on the performance of polysulfone ultrafiltration membranes, New Journal of Chemistry, 39 (2015) 703-712.
    [90] R.G. Toro, P. Calandra, F. Federici, T. de Caro, A. Mezzi, B. Cortese, A.L. Pellegrino, G. Malandrino, D. Caschera, Development of superhydrophobic, self-cleaning, and flame-resistant DLC/TiO 2 melamine sponge for application in oil–water separation, Journal of Materials Science, 55 (2020) 2846-2859.
    [91] S. Barroso-Solares, J. Pinto, G. Nanni, D. Fragouli, A. Athanassiou, Enhanced oil removal from water in oil stable emulsions using electrospun nanocomposite fiber mats, RSC advances, 8 (2018) 7641-7650.
    [92] Y. Yang, H. Yi, C. Wang, Oil absorbents based on melamine/lignin by a dip adsorbing method, ACS Sustainable Chemistry & Engineering, 3 (2015) 3012-3018.
    [93] W. Lehr, Containment and recovery devices for oil spill cleanup operations, Journal of Petroleum Technology, 26 (1974) 375-380.
    [94] X.-F. Sun, R. Sun, J. Sun, A convenient acetylation of sugarcane bagasse using NBS as a catalyst for the preparation of oil sorption-active materials, Journal of Materials Science, 38 (2003) 3915-3923.
    [95] W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, L. Jiang, Superhydrophobic and superoleophilic PVDF membranes for effective separation of water‐in‐oil emulsions with high flux, Advanced Materials, 25 (2013) 2071-2076.
    [96] A.O. Ifelebuegu, A. Johnson, Nonconventional low-cost cellulose-and keratin-based biopolymeric sorbents for oil/water separation and spill cleanup: A review, Critical Reviews in Environmental Science and Technology, 47 (2017) 964-1001.
    [97] E.A. Pavlatou, Commercial Sponges as A Novel Technology for Crude Oil Removal from Seawater and Industrial Wastewater: A Review, Biomedical Journal of Scientific & Technical Research, 25 (2020).
    [98] G. Zhang, P. Wang, X. Zhang, C. Xiang, L. Li, Preparation of hierarchically structured PCL superhydrophobic membrane via alternate electrospinning/electrospraying techniques, Journal of Polymer Science Part B: Polymer Physics, 57 (2019) 421-430.
    [99] T. Wang, J. Ding, J. Li, Y. Liu, J. Hao, Blends of poly (d, l‐lactide) with polyhedral oligomeric silsesquioxanes‐based biodegradable polyester: Synthesis, morphology, miscibility, and mechanical property, Journal of Applied Polymer Science, 131 (2014).
    [100] W.-H. Hsu, H.-M. Chang, Y.-L. Lee, A. Prasannan, C.-C. Hu, J.-S. Wang, J.-Y. Lai, J.M. Yang, N. Jebaranjitham, H.-C. Tsai, Biodegradable polymer-nanoclay composites as intestinal sleeve implants installed in digestive tract for obesity and type 2 diabetes treatment, Materials Science and Engineering: C, 110 (2020) 110676.
    [101] X. Qiao, S.J. Russell, X. Yang, G. Tronci, D.J. Wood, Compositional and in vitro evaluation of nonwoven type I collagen/poly-dl-lactic acid scaffolds for bone regeneration, Journal of functional biomaterials, 6 (2015) 667-686.
    [102] V. Guarino, A. Guaccio, D. Guarnieri, P.A. Netti, L. Ambrosio, Binary system thermodynamics to control pore architecture of PCL scaffold via temperature-driven phase separation process, Journal of biomaterials applications, 27 (2012) 241-254.
    [103] P. Michalicová, F. Mravec, M. Pekař, Fluorescence study of freeze-drying as a method for support the interactions between hyaluronan and hydrophobic species, PloS one, 12 (2017) e0184558.
    [104] F. Franks, Freeze-drying of bioproducts: putting principles into practice, European Journal of Pharmaceutics and Biopharmaceutics, 45 (1998) 221-229.
    [105] Q. Hou, D.W. Grijpma, J. Feijen, Preparation of interconnected highly porous polymeric structures by a replication and freeze‐drying process, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 67 (2003) 732-740.
    [106] G. Xu, F. Luo, Y. Liu, S. Chen, X. Xiao, Study of Nano Hydroxyapatite/Poly (Lactic Acid)-Polycaprolactone Nanofiber Composite Scaffolds, in: International Conference on Chemical, Material and Food Engineering, Atlantis Press, 2015.
    [107] R. Singla, R. Mehta, Preparation and Characterization of Polylactic Acid-Based Biodegradable Blends Processed Under Microwave Radiation, Polymer-Plastics Technology and Engineering, 51 (2012) 1014-1017.
    [108] T. Elzein, M. Nasser-Eddine, C. Delaite, S. Bistac, P. Dumas, FTIR study of polycaprolactone chain organization at interfaces, J Colloid Interface Sci, 273 (2004) 381-387.
    [109] C. Reshmi, S.P. Sundaran, A. Juraij, S. Athiyanathil, Fabrication of superhydrophobic polycaprolactone/beeswax electrospun membranes for high-efficiency oil/water separation, RSC advances, 7 (2017) 2092-2102.
    [110] D. Wang, X. Zhang, S. Luo, S. Li, Preparation and property analysis of melamine formaldehyde foam, Adv Mater Phys Chem, 2 (2012) 63-67.
    [111] Y. Feng, Y. Wang, Y. Wang, J. Yao, Furfuryl alcohol modified melamine sponge for highly efficient oil spill clean-up and recovery, Journal of Materials Chemistry A, 5 (2017) 21893-21897.
    [112] Y. Zhang, N. Zhang, S. Zhou, X. Lv, C. Yang, W. Chen, Y. Hu, W. Jiang, Facile preparation of ZIF-67 coated melamine sponge for efficient oil/water separation, Industrial & Engineering Chemistry Research, 58 (2019) 17380-17388.
    [113] V.H. Pham, J.H. Dickerson, Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials, ACS applied materials & interfaces, 6 (2014) 14181-14188.
    [114] R.d.V. Pereira, G.V. Salmoria, M.O.C.d. Moura, Á. Aragones, M.C. Fredel, Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering, Materials Research, 17 (2014) 33-38.
    [115] V. Trakoolwannachai, P. Kheolamai, S. Ummartyotin, Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material, Composites Part B: Engineering, 173 (2019) 106974.
    [116] M. Raucci, V. D’Antò, V. Guarino, E. Sardella, S. Zeppetelli, P. Favia, L. Ambrosio, Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration, Acta biomaterialia, 6 (2010) 4090-4099.
    [117] S. Chaudhuri, C.-M. Wu, Switchable Wettability of Poly (NIPAAm-co-HEMA-co-NMA) Coated PET Fabric for Moisture Management, Polymers, 12 (2020) 100.
    [118] Y. Zhou, Y. Wang, T. Liu, G. Xu, G. Chen, H. Li, L. Liu, Q. Zhuo, J. Zhang, C. Yan, Superhydrophobic hBN-Regulated Sponges with Excellent Absorbency Fabricated Using a Green and Facile Method, Sci Rep, 7 (2017) 45065.
    [119] M.A. Ermeydan, E. Cabane, P. Hass, J. Koetz, I. Burgert, Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly(ε-caprolactone) grafting into the cell walls, Green Chemistry, 16 (2014).
    [120] R. Wahi, L.A. Chuah, T.S.Y. Choong, Z. Ngaini, M.M. Nourouzi, Oil removal from aqueous state by natural fibrous sorbent: an overview, Separation and Purification Technology, 113 (2013) 51-63.
    [121] Y. Li, Z. Zhang, M. Wang, X. Men, Q. Xue, One-pot fabrication of nanoporous polymer decorated materials: from oil-collecting devices to high-efficiency emulsion separation, Journal of Materials Chemistry A, 5 (2017) 5077-5087.
    [122] H. Gao, P. Sun, Y. Zhang, X. Zeng, D. Wang, Y. Zhang, W. Wang, J. Wu, A two-step hydrophobic fabrication of melamine sponge for oil absorption and oil/water separation, Surface and Coatings Technology, 339 (2018) 147-154.
    [123] Z. Liu, J. Zhao, W. Li, J. Xing, L. Xu, J. He, Humidity-induced porous poly(lactic acid) membrane with enhanced flux for oil–water separation, Adsorption Science & Technology, 37 (2018) 389-400.
    [124] J. Zhao, W. Wang, C. Ye, Y. Li, J. You, Gravity-driven ultrafast separation of water-in-oil emulsion by hierarchically porous electrospun Poly(L-lactide) fabrics, Journal of Membrane Science, 563 (2018) 762-767.
    [125] Z. Xue, Z. Sun, Y. Cao, Y. Chen, L. Tao, K. Li, L. Feng, Q. Fu, Y. Wei, Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil–water separation, RSC Advances, 3 (2013) 23432.
    [126] D.D. Nguyen, N.-H. Tai, S.-B. Lee, W.-S. Kuo, Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method, Energy & Environmental Science, 5 (2012) 7908.
    [127] Z.-R. Jiang, J. Ge, Y.-X. Zhou, Z.U. Wang, D. Chen, S.-H. Yu, H.-L. Jiang, Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water, NPG Asia Materials, 8 (2016) e253-e253.
    [128] X. Dong, M. Cui, R. Huang, R. Su, W. Qi, Z. He, Polydopamine-Assisted Surface Coating of MIL-53 and Dodecanethiol on a Melamine Sponge for Oil-Water Separation, Langmuir : the ACS journal of surfaces and colloids, 36 (2020) 1212-1220.
    [129] X.F. Zhang, L. Song, X. Chen, Y. Wang, Y. Feng, J. Yao, Zirconium ion modified melamine sponge for oil and organic solvent cleanup, Journal of colloid and interface science, 566 (2020) 242-247.
    [130] J. Zhang, R. Chen, J. Liu, Q. Liu, J. Yu, H. Zhang, X. Jing, P. Liu, J. Wang, Superhydrophobic nanoporous polymer-modified sponge for in situ oil/water separation, Chemosphere, 239 (2020) 124793.
    [131] Z. Lei, P. Zheng, L. Niu, Y. Yang, J. Shen, W. Zhang, C. Wang, Ultralight, robustly compressible and super-hydrophobic biomass-decorated carbonaceous melamine sponge for oil/water separation with high oil retention, Applied Surface Science, 489 (2019) 922-929.
    [132] Y. Peng, J. Dai, Y. Liu, L. Cao, J. Zhu, X. Liu, Bio-Based Polybenzoxazine Modified Melamine Sponges for Selective Absorption of Organic Solvent in Water, Advanced Sustainable Systems, 3 (2019) 1800126.
    [133] S. Pourshahrestani, E. Zeimaran, N.A. Kadri, N. Mutlu, A.R. Boccaccini, Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing, Advanced Healthcare Materials, 9 (2020) 2000905.
    [134] T.M. Tamer, M.M. Sabet, A.M. Omer, E. Abbas, A.I. Eid, M.S. Mohy-Eldin, M.A. Hassan, Hemostatic and antibacterial PVA/Kaolin composite sponges loaded with penicillin-streptomycin for wound dressing applications, Sci Rep, 11 (2021) 3428.
    [135] S. Liu, Z. Zheng, S. Wang, S. Chen, J. Ma, G. Liu, B. Wang, J. Li, Polydopamine-coated chitosan/calcium pyrophosphate hybrid microflowers as an effective hemostatic agent, Carbohydr Polym, 224 (2019) 115175.
    [136] F. Lv, X. Cong, W. Tang, Y. Han, Y. Tang, Y. Liu, L. Su, M. Liu, M. Jin, Z. Yi, Novel hemostatic agents based on gelatin-microbial transglutaminase mix, Sci China Life Sci, 60 (2017) 397-403.
    [137] Z. Tong, J. Yang, L. Lin, R. Wang, B. Cheng, Y. Chen, L. Tang, J. Chen, X. Ma, In situ synthesis of poly (gamma- glutamic acid)/alginate/AgNP composite microspheres with antibacterial and hemostatic properties, Carbohydr Polym, 221 (2019) 21-28.
    [138] Y. Chen, J. Qian, C. Zhao, L. Yang, J. Ding, H. Guo, Preparation and evaluation of porous starch/chitosan composite cross-linking hemostatic, European Polymer Journal, 118 (2019) 17-26.
    [139] Q. Li, F. Lu, S. Shang, H. Ye, K. Yu, B. Lu, Y. Xiao, F. Dai, G. Lan, Biodegradable Microporous Starch with Assembled Thrombin for Rapid Induction of Hemostasis, ACS Sustainable Chemistry & Engineering, 7 (2019) 9121-9132.
    [140] S.S. Biranje, P.V. Madiwale, K.C. Patankar, R. Chhabra, P. Bangde, P. Dandekar, R.V. Adivarekar, Cytotoxicity and hemostatic activity of chitosan/carrageenan composite wound healing dressing for traumatic hemorrhage, Carbohydr Polym, 239 (2020) 116106.
    [141] J. Chen, J. Ai, S. Chen, Z. Xu, J. Lin, H. Liu, Q. Chen, Synergistic enhancement of hemostatic performance of mesoporous silica by hydrocaffeic acid and chitosan, Int J Biol Macromol, 139 (2019) 1203-1211.
    [142] A. Mahmoodzadeh, J. Moghaddas, S. Jarolmasjed, A. Ebrahimi Kalan, M. Edalati, R. Salehi, Biodegradable cellulose-based superabsorbent as potent hemostatic agent, Chemical Engineering Journal, 418 (2021).
    [143] N. Li, X. Yang, W. Liu, G. Xi, M. Wang, B. Liang, Z. Ma, Y. Feng, H. Chen, C. Shi, Tannic Acid Cross-linked Polysaccharide-Based Multifunctional Hemostatic Microparticles for the Regulation of Rapid Wound Healing, Macromol Biosci, 18 (2018) e1800209.
    [144] F. di Lena, Hemostatic polymers: the concept, state of the art and perspectives, J Mater Chem B, 2 (2014) 3567-3577.
    [145] U. Aydemir Sezer, Z. Kocer, I. Sahin, B. Aru, G. Yanikkaya Demirel, S. Sezer, Oxidized regenerated cellulose cross-linked gelatin microparticles for rapid and biocompatible hemostasis: A versatile cross-linking agent, Carbohydr Polym, 200 (2018) 624-632.
    [146] S. Ahmadi, A. Hivechi, S.H. Bahrami, P.B. Milan, S.S. Ashraf, Cinnamon extract loaded electrospun chitosan/gelatin membrane with antibacterial activity, Int J Biol Macromol, 173 (2021) 580-590.
    [147] R.K. Singh, B. Baumgartner, J.R. Mantei, R.N. Parreno, P.J. Sanders, K.M. Lewis, J.J. Barry, Hemostatic Comparison of a Polysaccharide Powder and a Gelatin Powder, J Invest Surg, 32 (2019) 393-401.
    [148] V.A. Paterno, A. Bisin, A. Addis, Comparison of the efficacy of five standard topical hemostats: a study in porcine liver and spleen models of surgical bleeding, BMC Surg, 20 (2020) 215.
    [149] S. Tavakoli, M. Kharaziha, S. Nemati, A. Kalateh, Nanocomposite hydrogel based on carrageenan-coated starch/cellulose nanofibers as a hemorrhage control material, Carbohydrate Polymers, 251 (2021).
    [150] B.J.D. Barba, C. Tranquilan-Aranilla, L.V. Abad, Hemostatic potential of natural/synthetic polymer based hydrogels crosslinked by gamma radiation, Radiation Physics and Chemistry, 118 (2016) 111-113.
    [151] C. Tranquilan-Aranilla, B.J.D. Barba, J.R.M. Vista, L.V. Abad, Hemostatic efficacy evaluation of radiation crosslinked carboxymethyl kappa-carrageenan and chitosan with varying degrees of substitution, Radiation Physics and Chemistry, 124 (2016) 124-129.
    [152] J. Guo, W. Sun, J.P. Kim, X. Lu, Q. Li, M. Lin, O. Mrowczynski, E.B. Rizk, J. Cheng, G. Qian, J. Yang, Development of tannin-inspired antimicrobial bioadhesives, Acta Biomater, 72 (2018) 35-44.
    [153] Y. Zheng, Y. Liang, D. Zhang, X. Sun, L. Liang, J. Li, Y.N. Liu, Gelatin-Based Hydrogels Blended with Gellan as an Injectable Wound Dressing, ACS Omega, 3 (2018) 4766-4775.
    [154] L. G. Gómez-Mascaraque, M. Martínez-Sanz, M.J. Fabra, A. López-Rubio, Development of gelatin-coated ι-carrageenan hydrogel capsules by electric field-aided extrusion. Impact of phenolic compounds on their performance, Food Hydrocolloids, 90 (2019) 523-533.
    [155] N. Devi, T.K. Maji, Microencapsulation of isoniazid in genipin-crosslinked gelatin-A-kappa-carrageenan polyelectrolyte complex, Drug Dev Ind Pharm, 36 (2010) 56-63.
    [156] N. Devi, D.K. Kakati, Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex, Journal of Food Engineering, 117 (2013) 193-204.
    [157] B. Rukmanikrishnan, S.K. Rajasekharan, J. Lee, S. Ramalingam, J. Lee, K-Carrageenan/lignin composite films: Biofilm inhibition, antioxidant activity, cytocompatibility, UV and water barrier properties, Materials Today Communications, 24 (2020).
    [158] F. Alavi, Z. Emam-Djomeh, M.S. Yarmand, M. Salami, S. Momen, A.A. Moosavi-Movahedi, Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin, Food Hydrocolloids, 85 (2018) 267-280.
    [159] P. Taheri, R. Jahanmardi, M. Koosha, S. Abdi, Physical, mechanical and wound healing properties of chitosan/gelatin blend films containing tannic acid and/or bacterial nanocellulose, Int J Biol Macromol, 154 (2020) 421-432.
    [160] X. Liang, K. Cao, W. Li, X. Li, D.J. McClements, K. Hu, Tannic acid-fortified zein-pectin nanoparticles: Stability, properties, antioxidant activity, and in vitro digestion, Food Res Int, 145 (2021) 110425.
    [161] N. Yu, J. Li, F. Ma, P. Yang, W. Liu, M. Zhou, Z. Zhu, S. Xing, Preparation and Properties of Cationic Gelatin Cross-Linked with Tannin, J Agric Food Chem, 68 (2020) 9537-9545.
    [162] Q. Zhao, S. Mu, Y. Long, J. Zhou, W. Chen, D. Astruc, C. Gaidau, H. Gu, Tannin‐Tethered Gelatin Hydrogels with Considerable Self‐Healing and Adhesive Performances, Macromolecular Materials and Engineering, 304 (2019).
    [163] Y.-H. Zhou, S.K. Vidyarthi, C.-S. Zhong, Z.-A. Zheng, Y. An, J. Wang, Q. Wei, H.-W. Xiao, Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration, Lwt, 134 (2020).
    [164] A. Kumar, A. Begum, M. Hoque, S. Hussain, B. Srivastava, Textural degradation, drying and rehydration behaviour of ohmically treated pineapple cubes, Lwt, 142 (2021).
    [165] M. Ajdary, M.A. Moosavi, M. Rahmati, M. Falahati, M. Mahboubi, A. Mandegary, S. Jangjoo, R. Mohammadinejad, R.S. Varma, Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity, Nanomaterials (Basel), 8 (2018).
    [166] F. Chen, X. Cao, X. Chen, J. Wei, C. Liu, Calcium-modified microporous starch with potent hemostatic efficiency and excellent degradability for hemorrhage control, J Mater Chem B, 3 (2015) 4017-4026.
    [167] A.T. Andrgie, H.F. Darge, T.W. Mekonnen, Y.S. Birhan, E.Y. Hanurry, H.Y. Chou, C.F. Wang, H.C. Tsai, J.M. Yang, Y.H. Chang, Ibuprofen-Loaded Heparin Modified Thermosensitive Hydrogel for Inhibiting Excessive Inflammation and Promoting Wound Healing, Polymers (Basel), 12 (2020).

    QR CODE