簡易檢索 / 詳目顯示

研究生: Wiwit Marta Pangesty Putri
Wiwit Marta Pangesty Putri
論文名稱: 應用合作賽局於不確定性情境下之電力總體規劃
Cooperative Game Theory by Considering Uncertainty in Electricity Master Plan Development
指導教授: 林希偉
Shi-Woei Lin
Erwin Widodo
Erwin Widodo
口試委員: 葉瑞徽
Ruey Huei Yeh
王孔政
Kung-Jeng Wang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 81
中文關鍵詞: 經濟調度改善聚合規則的隨機優化模型合作賽局理論不確定性
外文關鍵詞: Economic Dispatch, Improved Aggregating-Rule-based Stochastic Optimization (I-ARSO), Cooperative Game Theory, Uncertainties
相關次數: 點閱:257下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於傳統的確定性模型,將隨機或不確定性行為納入電力經濟調度問題之建模,不僅更貼近現實世界中的決策,並有助於降低資源調度的成本。此外,若在模型中考量其他再生能源(例如水力發電廠)的應用,可能進一步降低成本。本研究提出一個以促成最低調度成本為目標,結合火力電廠與水力電廠的隨機經濟調度(stochastic economic dispatch, SED)模型,並透過求解合作賽局模型以確認最低投資成本的聯盟。為解決隨機最佳化模型之高運算需求問題,本研究特別採用一個基於改善聚合規則的隨機優化(improved aggregating-rule-based stochastic optimization, I-ARSO)方法,將隨機經濟調度模型拆解為兩個階段。在第一階段,透過蒙地卡羅模擬產生N個電力需求與發電機的可用性情境,接著運用粒子群優化與人工魚群演算法對電力分配進行最佳化。在第二階段,模擬第一階段得到的每個最佳方案以評估相對應的預期運營成本。最後,透過合作賽局模型決定所有參與者之最佳安排,以確何可以得到包含預期營運成本、固定成本、變動成本、投資成本以及成本分配之最低總成本,。


    Modeling uncertain behavior through stochastic operating strategies in economic dispatch problems may better formulate the nature of real-world decisions and help reduce cost in resource scheduling compared to traditional deterministic approaches. Moreover, the involvement of renewable energy, such as hydro power plant, may further reduce the cost. This study proposes a stochastic economic dispatch (SED) model in thermal and hydro power plants to seek minimum dispatch costs. A cooperative game-theoretic model was also formulated to determine the coalition that will lead to minimum investment cost. In particular, for tackling the issue of high computational requirements when the stochastic optimization problem becomes bigger, SED model in this study was decomposed into two stages based on an improved aggregating-rule-based stochastic optimization (I-ARSO) approach. At the first stage, N Monte Carlo scenarios of power demand and generator availability were generated, and then power dispatch was optimized using the hybrid intelligent algorithm based on particle swarm optimization and artificial fish swarm algorithm. At the second stage, each optimal scenario is simulated to evaluate the corresponding expected operating cost. Finally, cooperative game theory will pick the best arrangement for all players to get the minimum total cost, which includes expected operating cost, fixed cost, variable cost, and investment cost as well as the cost allocation.

    摘要 iv ABSTRACT v ACKNOWLEDGMENT vi TABLE OF CONTENTS vii LIST OF TABLES ix LIST OF FIGURES x CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Research Objectives 6 1.3 Scopes and Assumption 6 1.4 Research Outlines 6 CHAPTER 2 LITERATURE REVIEW 8 2.1 Economic Dispatch 8 2.2 Game Theory 11 2.3 Stochastic Modeling 13 2.4 Related Research 15 CHAPTER 3 RESEARCH METHODOLOGY 24 3.1 Research Flowchart 24 3.2 Variables and Data 25 3.3 Model Development 27 3.3.1 Mathematical Model Formulation 27 3.3.2 Defining Characteristic Cost Function 28 3.3.3 Utilizing IARSO with Hybrid Intelligent Algorithms (PSO and AFSA) 28 3.3.4 Cost Allocation 36 CHAPTER 4 DATA PROCESSING 40 4.1 Data Collection and Processing 40 4.2 Cost Summary 44 CHAPTER 5 RESULT AND DISCUSSION 45 5.1 Parameter Setting for Hybrid Intelligent Algorithms (PSO and AFSA) 45 5.2 Algorithm Testing on Benchmark Instance 50 5.3 Algorithm Testing on Area 3 (Mahakam System) 53 5.4 Cooperation Evaluation 53 5.5 Cost Allocation 56 CHAPTER 6 CONCLUSION AND RECOMMENDATION 60 6.1 Conclusion 60 6.2 Recommendation for Future Research 61 REFERENCES 62 APPENDIX 69

    Abujarad, S. Y., Mustafa, M. W. and Jamian, J. J. (2017) ‘Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review’, Renewable and Sustainable Energy Reviews. Elsevier, 70(September 2016), pp. 215–223. doi: 10.1016/j.rser.2016.11.246.
    Arthur, I. C. (1983) ‘Branch-and-Bound Algorithm For Unit Commitment’, 0100(2), pp. 444–451.
    Biswas, P. P. et al. (2018) ‘Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power’, 150. doi: 10.1016/j.energy.2018.03.002.
    Blank, L. and Tarquin, A. J. (2018) Engineering economy.
    Dai, B. and Chen, H. (2012) ‘Profit allocation mechanisms for carrier collaboration in pickup and delivery service’, Computers and Industrial Engineering. Elsevier Ltd, 62(2), pp. 633–643. doi: 10.1016/j.cie.2011.11.029.
    Dillon, T. S. et al. (1978) ‘Integer Programming Approach to The Problem of Optimal Unit Commitment With Probabilistic Reserve Determination’, PAS-97(6), pp. 2154–2166.
    Du, L., Grijalva, S. and Harley, R. G. (2015) ‘Game-theoretic formulation of power dispatch with guaranteed convergence and prioritized bestresponse’, IEEE Transactions on Sustainable Energy, 6(1), pp. 51–59. doi: 10.1109/TSTE.2014.2358849.
    Faria, V. A. D. et al. (2018) ‘Cooperative game theory and last addition method in the allocation of firm energy rights’, Applied Energy. Elsevier, 226(June), pp. 905–915. doi: 10.1016/j.apenergy.2018.06.065.
    Farsi, F. N. Al et al. (2015) ‘Economic Dispatch in power systems’, IEEE 8th GCC Conference & Exhibition, 8, pp. 1–6. doi: 10.1109/IEEEGCC.2015.7060068.
    Fioriti, D., Giglioli, R. and Poli, D. (2016) ‘Short-term operation of a hybrid minigrid under load and renewable production uncertainty’, GHTC 2016 - IEEE Global Humanitarian Technology Conference: Technology for the Benefit of Humanity, Conference Proceedings. IEEE, pp. 436–443. doi: 10.1109/GHTC.2016.7857317.
    Fioriti, D. and Poli, D. (2019a) ‘A novel stochastic method to dispatch microgrids using Monte Carlo scenarios’, Electric Power Systems Research. Elsevier, 175(June), p. 105896. doi: 10.1016/j.epsr.2019.105896.
    Fioriti, D. and Poli, D. (2019b) ‘A novel stochastic method to dispatch microgrids using Monte Carlo scenarios’, Electric Power Systems Research. Elsevier, 175(June), p. 105896. doi: 10.1016/j.epsr.2019.105896.
    Frisk, M. et al. (2010) ‘Cost allocation in collaborative forest transportation’, European Journal of Operational Research. Elsevier B.V., 205(2), pp. 448–458. doi: 10.1016/j.ejor.2010.01.015.
    Hazi, K., Rosmaliati and Misbahuddin (2014) ‘Economic Dispatch Menggunakan Imperialist Competitive Algorithm (ICA) Pada Sistem Kelistrikan Lombok’, Dielektrika, 1(1), pp. 63–68. doi: ISSN 2086-9487.
    Hemmati, R., Saboori, H. and Saboori, S. (2016) ‘Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units’, Renewable Energy. Elsevier Ltd, 95, pp. 74–84. doi: 10.1016/j.renene.2016.03.054.
    Hong, J. S. and Kim, M. (2016) ‘Game-Theory-Based Approach for Energy Routing in a Smart Grid Network’, Journal of Computer Networks and Communications, 2016. doi: 10.1155/2016/4761720.
    Huang, S.-J. and Huang, C.-L. (1997) ‘Application of Genetic Based Neural Network to Thermal Unit Commitment’, IEEE Transactions on Power Systems, 12(2), pp. 654–660.
    Karavas, C. S., Arvanitis, K. and Papadakis, G. (2017) ‘A game theory approach to multi-agent decentralized energy management of autonomous polygeneration microgrids’, Energies, 10(11). doi: 10.3390/en10111756.
    Kim, S. and Ryu, J. H. (2011) ‘The sample average approximation method for multi-objective stochastic optimization’, Proceedings - Winter Simulation Conference, 12(2), pp. 4021–4032. doi: 10.1109/WSC.2011.6148092.
    Lanchier, N. (1998) Stochastic modeling, SPE Reprint Series. doi: 10.1201/9781315370309-12.
    Lee, Z. J. et al. (2008) ‘Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment’, Applied Soft Computing Journal, 8(1), pp. 55–78. doi: 10.1016/j.asoc.2006.10.012.
    Leyton-Brown, K. and Shoham, Y. (2008) Essentials of Game Theory, Journal of Chemical Information and Modeling. doi: 10.1017/CBO9781107415324.004.
    Li X, Shao Z, and Qian J. (2002) 'An optimizing method based on autonomous animals: fish-swarm algorithm', Syst Eng - Theory Pract;11:32e8.
    Lowery, P. G. (1966) ‘Generating Unit Commitment by Dynamic Programming’, IEEE Transactions on Power Apparatus and Systems, PAS-85(5), pp. 119–140. doi: 10.1007/978-3-319-62350-4_5.
    Mineral, K. E. dan S. D. (2017) ‘Rencana Usaha Penyediaan Tenaga Listrik PT Perusahaan Listrik Negara (Persero) 2017 - 2016’.
    Morales-España, G., Lorca, Á. and de Weerdt, M. M. (2018) ‘Robust unit commitment with dispatchable wind power’, Electric Power Systems Research, 155, pp. 58–66. doi: 10.1016/j.epsr.2017.10.002.
    Mori, H. and Matsuzaki, O. (2001) ‘Embedding the Priority List into Tabu Search for Unit Commitment’, IEEEE, 00(C), pp. 1067–1072.
    Moriarity, S. (1976) ‘Another Approach to Allocating Joint Costs: A Reply’, Accounting Review, 51(3), pp. 686–687. Available at: http://libaccess.mcmaster.ca.libaccess.lib.mcmaster.ca/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=4482363&site=ehost-live&scope=site.
    Murty, P. S. R. (2017) ‘Chapter 1 - Introduction’, in Murty, P. S. R. B. T.-E. P. S. (ed.). Boston: Butterworth-Heinemann, pp. 1–3. doi: https://doi.org/10.1016/B978-0-08-101124-9.00001-2.
    Ni, J. and Ai, Q. (2016) ‘Economic power transaction using coalitional game strategy in micro-grids’, IET Generation, Transmission and Distribution, 10(1), pp. 10–18. doi: 10.1049/iet-gtd.2014.1084.
    Niknam, T., Golestaneh, F. and Malekpour, A. (2012) ‘Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm’, Energy. Elsevier Ltd, 43(1), pp. 427–437. doi: 10.1016/j.energy.2012.03.064.
    Olivares, D. E. et al. (2015) ‘Stochastic-Predictive Energy Management System for Isolated Microgrids’, IEEE Transactions on Smart Grid, 6(6), pp. 2681–2693. doi: 10.1109/TSG.2015.2469631.
    Osborne, M. J. (2000) Linguists, Psychiatric Bulletin. Toronto: Oxford University Press. doi: 10.1192/pb.26.12.476-a.
    Pandzic, H. et al. (2016) ‘Toward cost-efficient and reliable unit commitment under uncertainty’, 2016 IEEE Power and Energy Society General Meeting (PESGM). IEEE, pp. 1–1. doi: 10.1109/pesgm.2016.7741080.
    Papavasiliou, A. and Oren, S. S. (2013) ‘Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network’, Operations Research, 61(3), pp. 578–592. doi: 10.1287/opre.2013.1174.
    Pilling, R., Chang, S. C. and Luh, P. B. (2017) ‘Shapley value-based payment calculation for energy exchange between micro- and utility grids’, Games, 8(4), pp. 1–12. doi: 10.3390/g8040045.
    Pourghasem, P. et al. (2019) ‘Stochastic multi-objective dynamic dispatch of renewable and CHP-based islanded microgrids’, Electric Power Systems Research. Elsevier, 173(April), pp. 193–201. doi: 10.1016/j.epsr.2019.04.021.
    PwC, C. et al. (2018) ‘Powering the Nation : Indonesian Power Industry Survey 2017’, PwC Publication, 9th(May), p. 40. Available at: https://katadata.co.id/berita/2018/03/13/ruptl-2018-2027-disetujui-jonan-pangkas-jumlah-pembangkit-listrik%0Ahttps://www.esdm.go.id/assets/media/content/content-ringkasan-ruptl-2018-2027.pdf%0Ahttps://katadata.co.id/berita/2017/03/31/porsi-pembangkit-list.
    Quan, H., Srinivasan, D. and Khosravi, A. (2016) ‘Integration of renewable generation uncertainties into stochastic unit commitment considering reserve and risk: A comparative study’, Energy. Elsevier Ltd, 103, pp. 735–745. doi: 10.1016/j.energy.2016.03.007.
    Reddy, N. M., Reddy, K. R. and Pradesh, A. (2013) ‘Detailed Literature Survey on Different’, 53(3), pp. 359–380.
    Sadegheih, A. (2009) ‘Optimization of network planning by the novel hybrid algorithms of intelligent optimization techniques’, Energy. Elsevier Ltd, 34(10), pp. 1539–1551. doi: 10.1016/j.energy.2009.06.047.
    Safta, C. et al. (2017) ‘Efficient Uncertainty Quantification in Stochastic Economic Dispatch’, IEEE Transactions on Power Systems. IEEE, 32(4), pp. 2535–2546. doi: 10.1109/TPWRS.2016.2615334.
    Schulze, T. and McKinnon, K. (2016) ‘The value of stochastic programming in day-ahead and intra-day generation unit commitment’, Energy. Elsevier Ltd, 101, pp. 592–605. doi: 10.1016/j.energy.2016.01.090.
    Shaabani, Y. ali, Seifi, A. R. and Kouhanjani, M. J. (2017) ‘Stochastic multi-objective optimization of combined heat and power economic/emission dispatch’, Energy, 141, pp. 1892–1904. doi: 10.1016/j.energy.2017.11.124.
    Shaabani, Y., Reza, A. and Kouhanjani, M. J. (2017) ‘Stochastic multi-objective optimization of combined heat and power economic / emission dispatch’, 141, pp. 1892–1904. doi: 10.1016/j.energy.2017.11.124.
    Shieh, H. L., Kuo, C. C. and Chiang, C. M. (2011) ‘Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification’, Applied Mathematics and Computation. Elsevier Inc., 218(8), pp. 4365–4383. doi: 10.1016/j.amc.2011.10.012.
    Singh, N. and Kumar, Y. (2015) ‘Multiobjective Economic Load Dispatch Problem Solved by New PSO’, Advances in Electrical Engineering, 2015, pp. 1–6. doi: 10.1155/2015/536040.
    Sisworahardjo, N. S. and El-Keib, A. A. (2002) ‘Unit Commitment Using The Ant Colony Search Algorithm’, Proceedings of the 2002 Large Engineering Systems Conference on Power Engineering, pp. 2–6. doi: 10.1109/LESCPE.2002.1020658.
    Smardon, R. (2018) ‘John H. Perkins. Changing energy: the transition to a sustainable future’, Journal of Environmental Studies and Sciences, 8(2), pp. 237–238. doi: 10.1007/s13412-018-0472-y.
    Sore, F., Rudnick, H. and Zolezzi, J. (2006) ‘Definition of an efficient transmission system using cooperative games theory’, IEEE Transactions on Power Systems, 21(4), pp. 1484–1492. doi: 10.1109/TPWRS.2006.884124.
    Srikantha, P. and Kundur, D. (2017) ‘A Game Theoretic Approach to Real-Time Robust Distributed Generation Dispatch’, IEEE Transactions on Industrial Informatics, 13(3), pp. 1006–1016. doi: 10.1109/TII.2016.2610951.
    Su, Z. et al. (2014) ‘A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting’, Energy Conversion and Management. Elsevier Ltd, 85, pp. 443–452. doi: 10.1016/j.enconman.2014.05.058.
    Sutrisno (2000) Manajemen Keuangan: Teori, Konsep, dan Aplikasi. Yogyakarta: Penerbit Ekonisia.
    Tang, W., Member, S. and Jain, R. (2016) ‘Dynamic Economic Dispatch Game : The Value of Storage’, IEEE Transactions on Smart Grid, 7(5), pp. 2350–2358. doi: 10.1109/TSG.2015.2495146.
    Tijs, S. H. and Driessen, T. S. H. (1986) ‘Game Theory and Cost Allocation Problems.’, Management Science, 32(8), pp. 1015–1028. doi: 10.1287/mnsc.32.8.1015.
    Widodo, E. (2017) ‘Set 2 - Two person - Zero sum game w Equilibrium’. Surabaya: Institut Teknologi Sepuluh Nopember, pp. 1–42.
    Xiang, M. et al. (2018) ‘Computing non-stationary (s, S) policies using mixed integer linear programming’, European Journal of Operational Research. Elsevier B.V., 271(2), pp. 490–500. doi: 10.1016/j.ejor.2018.05.030.
    Yildiran, N. and Tacer, E. (2015) ‘Game Theory Approach to Solve Economic Dispatch Problem’, International Journal of Trade, Economics and Finance, 6(4), pp. 230–234. doi: 10.7763/ijtef.2015.v6.474.
    Yuan, G. and Yang, W. (2019) ‘Study on optimization of economic dispatching of electric power system based on Hybrid Intelligent Algorithms (PSO and AFSA)’, Energy. Elsevier Ltd, 183, pp. 926–935. doi: 10.1016/j.energy.2019.07.008.
    Yuan, X. et al. (2009) ‘An improved binary particle swarm optimization for unit commitment problem’, Expert Systems with Applications. Elsevier Ltd, 36(4), pp. 8049–8055. doi: 10.1016/j.eswa.2008.10.047.
    Zhuang, F. and Galiana, F. D. (1990) ‘Unit commitment by Simulated Annealing’, 5(1).
    Zhuang, F., Galiana, F. D. and Member, S. (1988) ‘Towards A More Rigorous And Practical Unit Commitment By Lagrangian Relaxation’, 3(2).
    Zolezzi, J. M. and Rudnick, H. (2002) ‘Transmission cost allocation by cooperative games and coalition formation’, IEEE Transactions on Power Systems, 17(4), pp. 1008–1015. doi: 10.1109/TPWRS.2002.804941.
    Zou, D. et al. (2017) ‘A new global particle swarm optimization for the economic emission dispatch with or without transmission losses’, Energy Conversion and Management. Elsevier Ltd, 139, pp. 45–70. doi: 10.1016/j.enconman.2017.02.035.

    無法下載圖示 全文公開日期 2025/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE