簡易檢索 / 詳目顯示

研究生: 楊承穎
Cheng-Ying Yang
論文名稱: 開環岐化聚合反應合成聚對苯乙烯均聚物及嵌段共聚合物及結構鑑定
Preparation and Characterization of Phenylenevinylene Homopolymer and Block Copolymer by Ring Opening Metathesis Polymerization
指導教授: 游進陽
Chin-Yang Yu
口試委員: 堀江 正樹
Masaki Horie
施劭儒
Shao-Ju Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 156
中文關鍵詞: 開環複分解聚合開環岐化聚合共軛高分子聚對苯乙炔高分子環狀雙烯單體推拉電子取代基
外文關鍵詞: Conjugate polymers, ring opening metathesis polymerization(ROMP), phenylenevinylene(PPV), homopolymers, blockcopolymers, donor-acceptor
相關次數: 點閱:158下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去數十年間高分子化學的突飛猛進,造就了有機共軛高分子廣泛應用在有機二極體元件並且大大的改善了人們生活,同時聚對苯乙烯高分子(PPV)數十年來被廣泛的研究設成有機發光二極體、有機太陽能電池、有機場效電晶體。本論文合成了一系列帶有推電子或是拉電子取代基的環狀雙烯單體(cyclophanediene)、以及未有報導過的三層四烯單體,將會是一個有潛力發展為共軛樹枝狀高分子或共軛星狀高分子的材料。這些帶有環張力的分子可以經由開環歧化聚合反應(ROMP)成為聚對苯乙烯高分子,我們利用第二代Grubbs釕基催化劑(Grubbs II)合成一系列的均聚聚對苯乙烯(Homopolymer PPV)以及嵌段共聚聚对苯乙烯(Blockcopolymer PPV),利用不同取代基的推拉電子能力調控分子能階(Energy level)改變其吸收光與激發光特性。並以核磁共振儀、紫外光-可見光吸收光譜、螢光光譜、循環電位儀量測並鑑定其結構,這些新的共軛高分子材料期許被應用在有機太陽能電池或是有機發光二極體。


    Conjugate polymers have been wildly used as potential materials on the organic light emitting diode (OLEDs) devices, polymer solar cells (PSCs) and organic field effect transistors (OFETs). We prepared a series of cyclophanediene monomers containing electron donating or electron withdrawing substituents, and an unreported tri-layered cyclophanetetraene monomer. It would be a potential conjugate dendrimer polymer or conjugate star materials. These kinds of ring strained molecules can be ring opened to form phenylenevinylene polymers through ring opening metathesis polymerization (ROMP). Herein we report the preparation of phenylenevinylene homopolymers and block copolymers and their optical, electrochemical properties. Phenylenevinylene homopolymers and the block copolymer can be prepared by ROMP of cyclophanedienes in the presence Grubbs II initiator. The polymers have been fully characterized by 1H NMR spectroscopy and the optical and electrochemical properties can be determined by UV-Vis, PL spectroscopy and cyclic voltammetry. Overall, these new polymers are interesting and will be applied to optoelectronic devices such as organic photovoltaics or light emitting diodes

    ACKNOWLEDGMENTS IV ABSTRACT V CHAPTER 1. INTRODUCTION 1 1.1 INTRODUCTION TO CONJUGATED POLYMERS 3 1.2 INTRODUCTION TO ORGANIC SEMICONDUCTING MATERIALS 6 1.3 D-A CONJUGATED POLYMERS 7 1.4 SYNTHESIS OF PHENYLENEVINYLENE POLYMERS 11 1.4.1 POLY(P-PHENYLENEVINYLENE) (PPV) 11 1.4.2 PRECURSOR ROUTES TO PPVS 13 1.4.3 SUBSTITUTED PPV 15 1.4.4 APPLICATION ON PPV 19 1.5 ALKENE METATHESIS 20 1.6 RING OPENING METATHESIS POLYMERIZATION 22 1.7 AIMS OF THE PROJECT 24 1.8 REFERENCES 25 CHAPTER 2. SYNTHESIS AND CHARACTERIZATION OF CYCLOPHANE-BASED MONOMERS 27 2.1 INTRODUCTION TO CYCLOPHANEDIENES 27 2.2 SYNTHESIS AND CHARACTERIZATION 29 2.2.1 DIOCTYLOXY SUBSTITUTED DITHIAPARACYCLOPHANE 29 2.2.2 DIOCTYLOXY SUBSTITUTED PARACYCLOPHANEDIENE 38 2.2.3 DIPERFLUOROHEXYL SUBSTITUTED DITHIAPARACYCLOPHANE 42 2.2.4 DIPERFLUOROHEXYL SUBSTITUTED PARACYCLOPHANEDIENE 48 2.2.5 TETRAOCTYLOXY SUBSTITUTED DITHIAPARACYCLOPHANE 51 2.2.6 TETRAOCTYLOXY SUBSTITUTED PARACYCLOPHANEDIENE 53 2.2.7 TRI-LAYER DIOCTYLOXY SUBSTITUTED THIACYCLOPHANE 55 2.2.8 TRI-LAYER DIOCTYLOXY SUBSTITUTED CYCLOPHANETRTRAENE 64 2.3 REFERENCES 69 CHAPTER 3. SYNTHESIS AND CHARACTERIZATION OF POLYMER 70 3.1 HOMOPOLYMERS 70 3.1.1 SYNTHESIS OF POLY(P-PHENYLENEVINYLENE-2,5-DIOCTYLOXY-P- PHENYLENEVINYLENE)S P3.1 70 3.1.2 SYNTHESIS OF POLY(P-PHENYLENEVINYLENE-2,5-DIPERFLUOROHEXYL-P-PHENYLENEVINYLENE)S P3.2 73 3.1.3 SYNTHESIS OF POLY(2,5-DIOCTYLOXY-P-PHENYLENEVINYLENE)S P3.3 75 3.2 BLOCKCOPOLYMER 78 3.2.1 SYNTHESIS OF POLY(P-PHENYLENEVINYLENE-2,5-DIOCTYLOXY-P- PHENYLENEVINYLENE)-B-(P-PHENYLENEVINYLENE-2,5-DIPERFLUOROHEXYL-P- PHENYLENEVINYLENE)S P3.4 78 3.3 PROPERTIES OF POLYMERS 81 3.3.1 MOLECULAR WEIGHT 81 3.3.2 OPTICAL PROPERTIES 82 3.3.3 ISOMERIZATION BY EXPOSURE TO THE UV LIGHT 88 3.3.4 ELECTROCHEMICAL PROPERTIES 91 3.4 REFERENCES 97 CHAPTER 4. CONCLUSIONS 98 CHAPTER 5. EXPERIMENTAL SECTION 99 5.1 GENERAL PROCEDURES 99 5.2 SYNTHESIS 101 5.2.1 SYNTHESIS OF CYCLOPHANEDIENES 101 5.3.1 SYNTHESIS OF HOMOPOLYMERS 122 5.3.2 SYNTHESIS OF BLOCK COPOLYMERS 125 APPENDIX 126

    [1] T. Schimmel, M. Schwoerer, H. Naarmann, Synthetic Metals 1990, 37, 1-6.
    [2] A. J. Heeger, Reviews of Modern Physics 2001, 73, 681-700.
    [3] J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, A. Holmes, Nature 1990, 347, 539-541.
    [4] U. H. Bunz, Chemical reviews 2000, 100, 1605-1644.
    [5] A. Patil, A. Heeger, F. Wudl, Chemical Reviews 1988, 88, 183-200.
    [6] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J Chem Soc Chem Comm 1977, 578-580.
    [7] X. Guo, M. Baumgarten, K. Mullen, Progress in Polymer Science 2013, 38, 1832-1908.
    [8] F. Yakuphanoglu, Journal of Physics and Chemistry of Solids 2008, 69, 949-954.
    [9] B. Gunduz, I. S. Yahia, F. Yakuphanoglu, Microelectronic Engineering 2012, 98, 41-57.
    [10] G. Saygili, G. Unal, S. Ozcelik, C. Varlikli, Materials Science and Engineering: B 2012, 177, 921-928.
    [11] S. Chul Kim, B. Vijaya Kumar Naidu, S.-K. Lee, W.-S. Shin, S.-H. Jin, S.-J. Jung, Y.-R. Cho, J.-M. Shim, J. Kook Lee, J. Wook Lee, J. Hyeon Kim, Y.-S. Gal, Solar Energy Materials and Solar Cells 2007, 91, 460-466.
    [12] W. Geens, S. E. Shaheen, B. Wessling, C. J. Brabec, J. Poortmans, N. Serdar Sariciftci, Organic Electronics 2002, 3, 105-110.
    [13] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539-541.
    [14] M. T. Bernius, M. Inbasekaran, J. O'Brien, W. Wu, Advanced Materials 2000, 12, 1737-1750.
    [15] E. E. Havinga, W. ten Hoeve, H. Wynberg, Synthetic Metals 1993, 55, 299-306.
    [16] C. Duan, X. Hu, K.-S. Chen, H.-L. Yip, W. Li, F. Huang, A. K. Y. Jen, Y. Cao, Solar Energy Materials and Solar Cells 2012, 97, 50-58.
    [17] T. Junkers, J. Vandenbergh, P. Adriaensens, L. Lutsen, D. Vanderzande, Polymer Chemistry 2012, 3, 275-285.
    [18] Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Chemical Reviews 2009, 109, 5868-5923.
    [19] A. C. Grimsdale, K. Leok Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chemical Reviews 2009, 109, 897-1091.
    26
    [20] H. Gilch, W. Wheelwright, Journal of Polymer Science Part A‐1: Polymer Chemistry 1966, 4, 1337-1349.
    [21] H. Rost, A. Teuschel, S. Pfeiffer, H.-H. Horhold, Synthetic metals 1997, 84, 269-270.
    [22] Z. Bao, Y. Chen, R. Cai, L. Yu, Macromolecules 1993, 26, 5281-5286.
    [23] J. Lim, T. M. Swager, Angewandte Chemie 2010, 122, 7648-7650.
    [24] Y. Li, Y. Cao, J. Gao, D. Wang, G. Yu, A. J. Heeger, Synthetic Metals 1999, 99, 243-248.
    [25] N. Calderon, Acc. Chem. Res. 1972, 5, 127-&.
    [26] R. H. Grubbs, T. K. Brunck, J. Am. Chem. Soc. 1972, 94, 2538.
    [27] J. L. Herisson, Y. Chauvin, Makromolekulare Chemie 1971, 141, 161.
    [28] T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18-29.
    [29] C. J. Brown, A. C. Farthing, Nature 1949, 164, 915-916.
    [30] M. Szwarc, J. Chem. Phys. 1948, 16, 128-136.
    [31] D. J. Cram, H. Steinberg, J. Am. Chem. Soc. 1951, 73, 5691-5704.
    [32] K. C. Dewhirst, D. J. Cram, J. Am. Chem. Soc. 1958, 80, 3115-3125.
    [33] F. Vogtle, Angew. Chem. Int. Ed. 1969, 8, 274-&.
    [34] D. J. Cram, R. A. Reeves, J. Am. Chem. Soc. 1958, 80, 3094-3103.
    [35] R. A. W. Johnstone, M. E. Rose, Tetrahedron 1979, 35, 2169-2173.
    [36] R. H. Mitchell, T. K. Vinod, G. J. Bodwell, G. W. Bushnell, J. Org. Chem. 1989, 54, 5871-5879.
    [37] Boekelhe.V, I. D. Reingold, M. Tuttle, J. Chem. Soc., Chem. Commun. 1973, 406-407.
    [38] C. Y. Yu, M. L. Turner, Angew. Chem. Int. Ed. 2006, 45, 7797-7800.
    [39] V. McLoughlin, J. Thrower, Tetrahedron 1969, 25, 5921-5940.
    [40] J. Lim, T. M. Swager, Angew. Chem. 2010, 122, 7648-7650.
    [41] T. Otsubo, Y. Aso, F. Ogura, S. Misumi, A. Kawamoto, Bull. Chem. Soc. Jpn. 1989, 62, 164-170.
    [42] S. T. Nguyen, L. K. Johnson, R. H. Grubbs, J. W. Ziller, Journal of the American Chemical Society 1992, 114, 3974-3975.
    [43] B. R. Maughon, R. H. Grubbs, Macromolecules 1997, 30, 3459-3469.
    [44] Y. Minenkov, G. Occhipinti, V. R. Jensen, Organometallics 2013, 32, 2099-2111.
    [45] C.-Y. Yu, M. Helliwell, J. Raftery, M. L. Turner, Chemistry – A European Journal 2011, 17, 6991-6997.
    [46] C.-Y. Yu, M. Horie, A. M. Spring, K. Tremel, M. L. Turner, Macromolecules 2009, 43, 222-232.
    [47] M. Porz, D. Maker, K. Brodner, U. H. F. Bunz, Macromolecular Rapid Communications 2013, 34, 873-878.
    [48] A. Spring, University of Manchester 2010.
    [49] P. M. Beaujuge, C. M. Amb, J. R. Reynolds, Accounts of Chemical Research 2010, 43, 1396-1407.
    [50] T. E. Kang, H.-H. Cho, C.-H. Cho, K.-H. Kim, H. Kang, M. Lee, S. Lee, B. Kim, C. Im, B. J. Kim, ACS Applied Materials & Interfaces 2013, 5, 861-868.
    [51] T.-Q. Nguyen, I. B. Martini, J. Liu, B. J. Schwartz, The Journal of Physical Chemistry B 1999, 104, 237-255.
    [52] H. Katayama, M. Nagao, T. Nishimura, Y. Matsui, K. Umeda, K. Akamatsu, T. Tsuruoka, H. Nawafune, F. Ozawa, Journal of the American Chemical Society 2005, 127, 4350-4353.
    [53] J. Sun, L. P. Sanow, S.-S. Sun, C. Zhang, Macromolecules 2013, 46, 4247-4254.
    [54] M. Wan, H. Zhu, J. Guo, Y. Peng, H. Deng, L. Jin, M. Liu, Synthetic Metals 2013, 178, 22-26.

    無法下載圖示 全文公開日期 2019/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE