簡易檢索 / 詳目顯示

研究生: 巫憲易
Hsien-Yi Wu
論文名稱: 捲取PET薄膜之橫向偏移導正
Guiding of Lateral Deflection for Winding PET Films
指導教授: 黃昌群
Chang-Chiun Huang
口試委員: 郭中豐
Jeffrey Kuo
邱士軒
Shih-Hsuan Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 75
中文關鍵詞: 適應性控制輸出回授PID控制捲取薄膜橫向動態
外文關鍵詞: Lateral Deflection, PID Control, Output Feedback, Moving Web, Adaptive Control
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在聚酯(Polyester,PET)膜的捲取過程,一般是藉由羅拉或滾輪做為傳輸與控制的設備,在業界又稱為Roll-to-Roll設備。捲取過程中,理想的動態行為應僅有縱向方向的動態,但實際上因為羅拉之間架設的不平行、橫向上的干擾、不穩定的線速度與張力控制以及PET薄膜本身所造成的振動,這些因素會使PET薄膜產生橫向偏移,當PET薄膜產生橫向偏移時會導致產品品質的降低產生瑕疵,例如:貼合不良、分條不均、收捲不齊、捲邊、皺折、印刷歪斜等,使得原料的浪費並可能對製程中的設備造成損害。本文主旨將針對聚酯膜於三羅拉兩間距的系統上,產生的橫向偏移量加以分析與控制,以期望橫向偏移量能抑制在允許公差內。由於聚酯膜受到前段製程及系統內橫向的隨機干擾,使得聚酯膜在收捲端位置的橫向偏移呈現極不穩定的情形,因此採用自調式類神經PID控制器與高增益輸出回授適應性控制器,因為此兩種控制器對於外在干擾皆具有良好強健性與適應性。自調式類神經PID控制器,以現今業界應用最廣泛的PID控制器為主控制器,藉由倒傳遞類神經的學習方法調整PID控制器的增益參數,使增益參數能依據系統的狀態適時的做線上調整,以增強控制器的自調性與強健性;高增益輸出回授適應性控制器,為非基於鑑定(Non-Identifier-Based)方法的適應性控制,利用線上調整回授增益的方式,使得控制器具有良好的適應性,而此方法在過去常被應用在衰減干擾、系統參數變動與抑制系統不確定性。最後在實驗中,將PET膜架設於所建構的系統上,由於PET膜在系統內受到隨機性的干擾,使得在收捲端位置造成橫向偏移,因此利用自調式類神經PID控制器與高增益輸出回授適應性控制器,加以導正收捲端位置的橫向偏移量,其結果可證明所提出的兩種控制器皆可有效降低干擾對於橫向偏移量的影響,並導正PET膜的橫向偏移得到良好的控制效果。


In the winding process of polyester (PET) films, the PET film is conveyed through a system of rollers or cylinders that supply support, transport, and control. This kind of conveyance is called a roll-to-roll apparatus. Ideally, the motion of the PET film winding process is only in a longitudinal direction. This is not the case for real conveyance systems since misalignment of rollers, lateral disturbances, unsteady speed and tension, and the films physical properties result in lateral deflection of the PET film. This lateral deflection may lead to the downgrade of product quality and material waste, damage the equipment, and produce material defects such as illegal laminating, uneven edge of slitting, slack selvedge in winding, crimping, winkle, and slant on painting, etc. The material of PET films is adopted, and the winding system is constructed by a three-roller two-span mechanism for experiments. The main objective of this thesis is to analyze and control the lateral deflection so that the lateral deflection is within the required tolerance in the winding process. In this thesis, we adopted the self-tuning neuro-PID controller and adaptive high-gain output feedback controller because the indeterminate disturbances exist in the system. Both controllers possess robustness and adaptability. The self-tuning neuro-PID controller is used to self tune the parameters of the PID controller by the backpropagation neural network method, which is based on the deviation of the output response to a target. The self learning feature of the neural network can be exploited in autotuning the PID gain parameters. The adaptive high-gain output feedback controller can tune the high-gain parameters online, which is not based on any parameter identification or estimation algorithm. This controller works well on disturbance rejection, parameter variations and system uncertainty. The investigation was tested through the computer simulation and experiments for its validity. We set up the PET film on the designed mechanism. There exists stochastic lateral disturbances in the process that cause the lateral deflection of the moving PET film. Then, the self-tuning neuro-PID controller and adaptive high-gain output feedback controller are designed to guide the lateral deflection. The results reveal that the controllers provide good guiding performance for lateral deflection and to reduce substantially the effect of disturbances on the lateral defection of winding PET films.

摘要....I Abstract....II 致謝....IV 目錄....V 圖索引...VII 表索引..XI 第一章 緒論..1 1.1 前言..1 1.2 研究動機與目的1 1.3 文獻回顧....2 1.3.1 橫向偏移模式與控制方法..3 1.3.2 自調式類神經PID控制器...4 1.3.3 高增益輸出回授適應性控制器.....5 1.4 本文大綱.....7 第二章 系統模式建立..8 2.1 薄膜橫向偏移校正基本概念.....8 2.2 系統架構.......9 2.3 單間距系統模式...10 2.4 三羅拉兩間距系統模式..13 第三章 控制理論...15 3.1 類神經網路控制理論...15 3.1.1 人工神經元模型...15 3.1.2 類神經網路的基本架構...18 3.1.3 倒傳遞類神經網路..19 3.1.4 自調式類神經PID控制器..20 3.2 高增益輸出回授適應性控制理論.24 3.2.1 高增益回授應用於線性系統...24 3.2.2 高增益回授應用於非線性系統.25 3.2.3 高增益回授應用於受干擾系統..28 3.2.4 高增益輸出回授適應性控制..29 第四章 電腦模擬與討論..33 4.1 模擬結果.....33 4.1.1 模擬自調式類神經PID控制器於導正橫向偏移..34 4.1.2 模擬高增益輸出回授適應性控制器於導正橫向偏移...34 4.2 模擬結果與討論...36 第五章 實驗硬體設備..46 5.1 張力感測器......46 5.2 攝影機.......47 5.3 位移感測器......48 5.4 交流伺服馬達...49 第六章 實驗結果與討論...51 6.1 實驗步驟......51 6.2 線速度與張力控制 52 6.3 實驗結果....55 6.3.1 應用自調式類神經PID控制器於導正橫向偏移...55 6.3.2 應用高增益輸出回授適應性控制器於導正橫向偏移..56 6.4 實驗結果討論.....58 第七章 結論與建議...68 7.1 結論 68 7.2 建議.....69 參考文獻...70

[1] 陳克昌, 莊佳橙, 陳信吉, “Roll-to-Roll捲送設備技術分析”, 機械工業雜誌, 258期, pp. 122-136, 2003.
[2] D. P. Campbell, “Process Dynamics”, Wiley, pp. 113-156, 1958.
[3] J. J. Shelton, “Lateral Dynamics of a Moving Web”, PhD thesis, Oklahoma State University, 1968.
[4] J. J. Shelton and K. N. Reid, “Lateral Dynamics of an Idealized Moving Web”, ASME Journal of Dynamics Systems, Measurement, and Control, No. 3, pp. 187-192, 1971a.
[5] J. J. Shelton and K. N. Reid, “Lateral Dynamics of an Real Moving Web”, ASME Journal of Dynamics Systems, Measurement, and Control, No. 3, pp. 180-186, 1971b.
[6] J. D. Pfeiffer, “Web Guidance Concepts and Applications”, TAPPI Journal, Vol. 60, No. 12, pp. 53-58, 1977.
[7] L. A. Sievers, M. J. Balas and A. V. Flotow, “Modeling of Web Conveyance System for Multivariable Control”, IEEE Transactions on Automatic Control, Vol. 33, pp. 524-531, 1988.
[8] G. E. Young, J. J. Shelton and B. Fang, “Interaction of Web Spans: Part І-Statics”, ASME Journal of Dynamics Systems, Measurement, and Control, Vol. 111, pp. 490-496, 1989.
[9] G. E. Young, J. J. Shelton and B. Fang, “Interaction of Web Spans: Part ІІ-Dynamics”, ASME Journal of Dynamics Systems, Measurement, and Control, Vol. 111, pp. 497-504, 1989.
[10] G. E. Young, J. J. Shelton and C. Kardamilas, “Modeling and Control of Multiple Web Spans Using State Estimation”, ASME Journal of Dynamics Systems, Measurement, and Control, Vol. 111, pp. 505-510, 1989.
[11] G. E. Young and K. N. Reid, “Lateral and Longitudinal Dynamic Behavior and Control of Moving Web”, ASME Journal of Dynamics Systems, Measurement, and Control, Vol. 115, pp. 309-317, 1993.
[12] M. P. G. J. Besteman, C. H. L. Limpens, R. Babuska, J. B. Otten and M. Verhaegen, “Modeling and Identification of a Strip Guidance Process with Internal Feedback”, IEEE Transactions on Control Systems Technology, Vol. 6, No. 1, pp. 88-101, 1998.
[13] J. B. Yerashunas, J. A. De Abreu-Garcia and T. T. Hartley, “Control of Lateral Motion in Moving Webs”, IEEE Transactions on Control Systems Technology, Vol. 11, No. 5, pp. 684-693, 2003.
[14] K.-H. Shin, S.-O. Kwon, S.-H. Kim and S.-H. Song, “Feedforward Control of the Lateral Position of a Moving Web Using System Identification”, IEEE Transactions on Industry Applications, Vol. 40, No. 6 , pp. 1637-1634, 2004.
[15] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning Internal Representations by Error Propagation’’, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations, pp. 318-362, Cambridge, MA, MIT Press, 1986.
[16] M. Minsky and S. Papert, “Perceptrons’’, Cambridge, MA, MIT Press, 1969.
[17] C.-T. Chang, J. Hwu and W.-D. Chang, “Nonlinear Process Control Based on Using an Adaptive Single Neuron’’, Journal of the Chinese Institute of Chemical Engineers, Vol. 30, No. 2, pp.141-149, 1999.
[18] J. G. Zieger and N. B. Nichols, “Optimum Setting for Automatic Controllers”, Transactions of the ASME, Vol. 64, pp. 759-768, 1942.
[19] S. Omatu, M. Khalid and R. Yusof, ‘‘Neural-Control and Its Applications’’, Springer, 1996.
[20] Y.-K. Yeo and T.-I. Kwon, ‘‘A Neural PID Control for the pH Neutralization Process’’, Industrial and Engineering Chemistry Research, Vol. 38, No. 3, pp. 978-987, 1999.
[21] M. Zaheer-uddin and N. Tudoroiu, ‘‘Neuro-PID Tracking Control of a Discharge Air Temperature System’’, Energy Conversion and Management, Vol. 45, No. 15-16, pp. 2405-2415, 2004.
[22] H. Shu and Y. Pi, ‘‘PID Neural Networks for Time-delay Systems’’, Computers and Chemical Engineering, Vol. 24, No. 2, pp. 859-862, 2000.
[23] R. T. Newton and Y. Xu, ‘‘Neural Network Control of a Space Manipulator’’, IEEE Control Systems Magazine, Vol. 13, No. 6, pp. 14-22, 1993.
[24] G.-C. Chang, J.-J. Luh, G.-D. Liao, J.-S. Lai, C.-K. Cheng, B.-L. Kuo and T.-S. Kuo, ‘‘A Neuro-Control System for the Knee Joint Position Control with Quadriceps Stimulation’’, IEEE Transactions on Rehabilitation Engineering, Vol. 5, No. 1, pp. 2-11, 1997.
[25] A. Andrasik, A. Meszaros and S. F. De Azevedo, ‘‘On-line Tuning of a Neural PID Controller Based on Plant Hybrid Modeling’’, Computers and Chemical Engineering, Vol. 28, No. 8, pp. 1499-1509, 2004.
[26] K. Tanaka, M. Oka, A. Uchibori and Y. Iwata, ‘‘Precise Position Control of an Ultrasonic Motor Using the PID Controller with NN’’, Electrical Engineering in Japan, Vol. 146, No. 3, pp. 1317-1324, 2004.
[27] K. Hornik, M. Stinchcombe and H. White, ‘‘Multilayer Feedforward Networks Are Universal Approximators’’, Neural Networks, Vol. 2, No. 5, pp. 359-366, 1989.
[28] D. Psaltics, A. Siderris and A. A. Yamamura, ‘‘A Multilayered Neural Network Controller’’, IEEE Control Systems Magazine, Vol. 8, No. 2, pp. 17-21, 1988.
[29] M. Saerens and A. Soquet, ‘‘Neural Controller Based on Back-Propagation Algorithm’’, IEE Proceedings-F, Vol. 138, No. 1, pp. 55-62, 1991.
[30] Y.-P. Du and N. Waing, “A PID Controller with Neuron Tuning Parameters For Multi-Model Plants”, IEEE Proceedings of International Conference on Machine Learning and Cybernetics, Vol. 6, pp. 3408-3411, 2004.
[31] K.-K. D. Young, P. V. Kokotovic and V. I. Utkin, ‘‘A Singular Perturbation Analysis of High-Gain Feedback Systems’’, IEEE Transactions on Automatic Control, Vol. AC-22, pp. 931-937, 1977.
[32] H. K. Khalil and A. Saberi, ‘‘Adaptive Stabilization of a Class of Nonlinear Systems Using High-Gain Feedback’’, IEEE Transactions on Automatic Control, Vol. AC-32, No. 11, pp. 1031-1035, 1987.
[33] R. Marino, W. Respondek and A. J. Van Der Schaft, ‘‘Almost Disturbance Decoupling for Single-Input Single-Output Nonlinear Systems’’, IEEE Transactions on Automatic Control, Vol. 34, No. 9, pp. 1013-1016, 1989.
[34] A. Ilchmann, ‘‘Non-Identifier-Based Adaptive Control of Dynamical Systems: A Survey’’, IMA Journal of Mathematical Control and Information, Vol. 8, No. 4, pp. 321-366, 1991.
[35] A. Ilchmann, ‘‘Non-Identifier-Based High-Gain Adaptive Control’’, Lecture Notes in Control and Information Sciences 189, Springer-Verlag, 1993.
[36] F. Mazenc, L. Praly and W. P. Dayawansa, ‘‘Global Stabilization by Output Feedback: Examples and Counter Examples’’, Systems and Control Letters, Vol. 23, No. 2, pp. 119-125, 1994.
[37] M. Jankovic, R. Sepulchre and P. V. Kokotovic, ‘‘Constructive Lyapunov Stabilization of Nonlinear Cascade Systems’’, IEEE Transactions on Automatic Control, Vol. 41, No. 12, pp. 1723-1735, 1996.
[38] M. Jankovic, R. Sepulchre and P. V. Kokotovic, ‘‘Global Adaptive Stabilization of Cascade Nonlinear Systems’’, Automatica, Vol. 33, No. 2, pp. 263-268, 1997.
[39] C. Qian and W. Lin, ‘‘Output Feedback Control of a Class of Nonlinear Systems: A Nonseparation Principle Paradigm’’, IEEE Transactions on Automatic Control, Vol. 47, No. 10, pp. 1710-1715, 2002.
[40] C. Qian, ‘‘Semi-Global Stabilization of a Class of Uncertain Nonlinear Systems by Linear Output Feedback’’, IEEE Transactions on Circuits and Systems, Vol. 52, No. 4, pp. 218-222, 2005.
[41] Y. Xudong, ‘‘Universal Stabilization of Feedforward Nonlinear Systems’’, Automatica, Vol. 39, No. 1, pp. 141-147, 2003.
[42] H.-L. Choi and J.-T. Lim, ‘‘Stabilization of a Class of Nonlinear Systems by Adaptive Output Feedback’’, Automatica, Vol. 41, No. 6, pp. 1091-1097, 2005.
[43] S.-H. Lee, T.-H. Kim and J.-T. Lim, ‘‘A New Stability Analysis of Switched Systems’’, Automatica, Vol. 36, No. 6, pp. 917-922, 2000.
[44] 鍾國亮, ‘‘影像處理與電腦視覺’’, 東華書局, pp. 79-97, 2004.
[45] D. W. Patterson, ‘‘Artificial Neural Networks: Theory and Applications’’, Prentice Hall, 1995.
[46] G. Lekutai, ‘‘Adaptive Self-Tuning Neuro Wavelet Network Controllers’’, PhD thesis, Virginia Polytechnic Institute and State University, 1997.
[47] C.-T. Chen, ‘‘Linear System Theory and Design’’, New York: Holt, Rinehart, and Winston, 1984.
[48] 陳忠杰, ‘‘織布輸送之側向偏移控制’’, 國立台灣科技大學碩士論文, 1995.
[49] 蔡名杰, ‘‘應用自調式類神經PID控制器於滾筒振動控制’’, 國立台灣科技大學碩士論文, 2001.
[50] 彭棨俊, ‘‘應用模糊滑動模式控制於PET膜捲取系統之張力控制’’, 國立台灣科技大學碩士論文, 2005.

無法下載圖示 全文公開日期 2006/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE