簡易檢索 / 詳目顯示

研究生: 王俊欽
CHUN-CHIN WANG
論文名稱: 不同螺紋設計與材料之鎖定骨板對疲勞強度影響之研究
Effect of Thread Profile and Material Properties on Fatigue Strength of Locking Plate
指導教授: 趙振綱
Ching-Kong Chao
林晉
Jinn Lin
口試委員: 王兆麟
Jaw-Lin Wang
林宗鴻
Tsung-Hung Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 92
中文關鍵詞: 有限元素分析生物力學測試鎖定骨板凹口效應凹口敏感度鈦合金不鏽鋼疲勞強度
外文關鍵詞: Finite element analysis, Biomechanical test, Loc
相關次數: 點閱:222下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在骨科手術中,骨板廣泛地被用來治療各種部位的骨折,而新型的鎖定式骨板(Locking plate)其螺絲與骨板可用螺紋系統結合,因此比傳統的動態加壓骨板(dynamic compression plate)要能提供更佳的穩定度。然而螺紋幾何所造成的凹口經常產生應力集中進而降低元件之疲勞壽命,而不同材料有不同的凹口敏感度,使其凹口對疲勞壽命有不同的影響。因此本研究目的為探討螺紋設計與不同材料對鎖定式骨板機械性能優劣性之影響。
      在本文中,分為生物力學測試以及有限元素分析兩部分,在生物力學測試方面,總共對九種骨板進行降伏測試與疲勞測試,而在實驗後得到位移、負載之關係而計算出其彎曲徑度、降伏強度與疲勞壽命;而在有限元素分析方面,利用SolidWorks建立三維骨板模型並匯入ANSYS來進行模擬,其負荷情形與邊界條件和機械測試相同,並得到有限元素分析數值之最大張應力與位移,並將生物力學測試與有限元素分析做一相關性的比較。
      由機械測試結果得知,鈦合金骨板一但有螺紋設計後,其疲勞壽命將大幅下降,而不鏽鋼因較不受凹口影響,故螺紋引起之凹口效應較不顯著。有限元素分析結果顯示,當最大應力發生在螺紋頂角時,便會引發因螺紋產生的凹口效應。F1314不鏽鋼有著比316L不鏽鋼高的靜態強度,且也較不受凹口效應影響,故其疲勞壽命為本研究表現最佳之材料。此生物力學研究結果可以提供給相關工程師做為改良鎖定式骨板之設計参考。


      Osteosynthesis plates have been used to treat various types of fracture in surgical operation. Locking plate can provide more stability than traditional dynamic compression plate because its locking screw can lock on plate by threaded hole . However, the notch of thread geometry often produces stress concentration that decreases the fatigue life of components. There are various materials with different notch-sensitivity that resulted the different effect on fatigue life. Thus the purpose of this study was to investigate the mechanical property of locking plate with different materials and thread design.
      In biomechanical testing, both the yielding test and fatigue test were performed. In finite element analysis, a 3D finite element model was carried out to simulate the situation of biomechanical testing. Consequently the maximal tensile stress and displacement were calculated and compared with each other for both biomechanical test and finite element analysis.
      From the results of biomechanical test, the titanium alloy plates with thread design significantly shorten the fatigue life . The fatigue life of stainless steel plate is not significantly shorten by thread design, because it's not sensitivity to notch. The finite element analysis shows the notch effect is cause of thread, while the tip of thread with maximal stress. Both stainless steel F1314 and stainless steel 316L have lower notch-sensitivity, but stainless steel F1314 has higher static strength, so its performance of fatigue life is the best in this study. The results of this study could directly provide the engineer for new design of improves the locking plate.

    目 錄                  中文摘要 I ABSTRACT II 誌 謝 III 目 錄 IV 圖目錄索引 VI 表目錄索引 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 股骨之解剖學構造 2 1.3骨板簡介 5 1.4 文獻回顧 8 第二章 研究方法 12 2.1 研究程序 12 2.2 有限元素法簡介 13 2.2.1 有限元素法分析流程 13 2.3 鎖定式骨板之有限元素分析模型測試 15 2.3.1建立骨板基本幾何參數 15 2.3.2 測試骨板之建立 17 2.3.3 網格化與材料設定 17 2.3.4 邊界條件與求解 18 2.3.5 後處理與收斂性分析 19 2.4 改善鎖定式骨板幾何設計 20 2.5 最終幾何設計 23 2.6 機械測試 24 2.6.1 鎖定骨板實體模型之測試類別 25 2.6.2 骨板測試夾治具之準備 30 2.6.3 骨板之降伏測試 31 2.6.4 骨板之疲勞測試 34 2.7 有限元素分析 35 2.7.1 骨板模型之建立 35 2.7.2 網格化與材料設定 35 2.7.3 邊界條件與求解 37 2.7.4 後處理 38 2.8 統計分析 38 第三章 結果 39 3.1 機械測試之結果 39 3.1.1 骨板降伏測試結果 39 3.1.2 骨板疲勞測試之結果 47 3.2 有限元素分析之結果 69 第四章 討論 73 4.1 降伏測試結果之綜合討論 73 4.2 疲勞測試結果之綜合討論 75 4.2.1 凹口效應 76 4.2.2 破斷分析 82 4.3 研究限制 87 第五章 結論與未來展望 88 5.1 結論 88 5.2 未來展望 89 參考文獻 90

    [1] Egol KA, Kubiak EN, Fulkerson E, et al. "Biomechanics of locked plates and screws," J Orthop Trauma 2004;18:488–93.
    [2] Walsh S, Reindl R, Harvey E, et al. "Biomechanical comparison of a unique locking plate versus a standard plate for internal fixation of proximal humerus fractures in a cadaveric model," Clin Biomech 2006;21:1027–31.
    [3] Freeman AL, Tornetta P, Schmidt A, Bechtold J, Ricci W, Fleming M. "How much do locked screws add to the fixation ‘‘hybrid’’ plate constructs in osteoporotic bone? " J Orthop Trauma 2010;24:163–9.
    [4] Chao CK, Hsu CC, Wang JL, Lin J. "Increasing bending strength of tibial locking screws: mechanical tests and finite element analyses" Clin Biomech 2007;22:59–66
    [5] Hsu CC, Chao CK, Wang JL, Hou SM, Tsai YT, Lin J. "Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses." J Orthop Res 2005;23:788–94
    [6] Tolat AR, Amis A, Crofton S, Sinha J. "Failure of humeral fracture fixation plate in a young patient using the Philos system: case report." J Shoulder Elbow Surg 2006;15:e44-7
    [7] DeBaere T, Lecouvet F, Barbier O. "Breakage of a Volar Locking Plate after Delayed Union of a distal radius fracture." Acta Orthopaedica Belgica 2007, 73:785-790
    [8] YukataK, DoiK,HattoriY, Sakamoto S. "Early breakage of a titanium volar locking plate for fixation of a distal radius fracture: case report. "J Hand Surg Am 2009;34:907–9.
    [9] Vallier HA, Hennessey TA, Sontich JK, Patterson BM. "Failure of LCP condylar plate fixation in the distal part of the femur." A report of six cases. J Bone Joint Surg Am 2006;88(4):846–53.
    [10] Button G, Wolinsky P, Hak D. "Failure of less invasive stabilization system plates
    in the distal femur : a report of four cases." J Orthop Trauma 2004 ; 18 : 565-570.
    [11] Sommer, C., Babst, R., Muller, M., Hanson, B., 2004. "Locking compression plate loosening and plate breakage: a report of four cases." J. Orthop. Trauma 18 (8), 571–577.
    [12] Banovetz JM, Sharp R, Probe RA, Anglen JO. "Titanium plate fixation: a review
    of implant failures." J Orthop Trauma 1996; 10(6):389–94
    [13] F.B. Christensen F. Sejling S Overgaard C. Bu ̈nger, "Titanium-alloy enhances bone-pedicle screw fixation:mechanical and histomorphometrical results of titanium-alloy versus stainless steel," Eur Spine J9:pp.97-103(2000)
    [14] Po-Quang Chen, MD,* Son-Jyh Lin, MSc, Shing-Sheng Wu, MD, and Hon So, PhD. "Mechanical Performance of the New Posterior Spinal Implant:Effect of Materials, Connecting Plate, and Pedicle Screw Design," SPINE Volume 28, Number 9, pp 881-887,(2003)
    [15] Deith L. Moore and Arthur F Dalley,ANATOMY,Hagerstown,Lippincott Williams & Wilkins(2001).
    [16] 林晉,鎖定式股隨內釘之基礎科學與臨床應用,台北,合記圖書出版社,
    民國93年.
    [17] Netter, F.H, Atlas of Human Anatomy, 2nd ed.," ICON Learning Systems (2002).
    [18] 梁蘭麗,股骨Z型外翻截骨術之三維有限元素分析,中原大學醫學工程系碩
    士論文,民國92年.
    [19] 黃啟仲,陳偉洤等,「大體解剖學」,藝軒圖書出版社,p601~604,1989.
    [20] 蔡文基,楊榮森,「臨床骨折學」第305~343頁,合記書局,民國87年.
    [21] Gaetano J. Scuderi, MD, Steven S. Greenberg, MD, Dan S. Cohen, MD, Loren L. Latta, PE, PhD, and Frank J. Eismont, MD. "A Biomechanical Evaluation of Magnetic Resonance Imaging-Compatible Wire in Cervical Spine Fixation." SPINE Volume 18, Number 14, pp 1991-1994,(1993)
    [22] Jeffery L. Stambough, Ashraf M. Genaidy, Ronald L. Huston,*Hassan Serhan, Fadi El-khatib, and Ehap H.Sabri, "Biomechanical Assessment of Titanium and Stainless Steel Posterior Spinal Constructs: Effect of Absolute/Relative Loading and Frequency on Fatigue Life and Determination of Failure Modes." Spinal Disorders Vol. 10, No.6, pp. 473-481
    [23] Pienkowski D, Stephens GC, Doers TM, Hamilton DM. "Multicycle mechanical
    performance of titanium and stainless steel transpedicular spine implants." Spine
    1998; 23:782-788.
    [24] Gaebler C, Stanzl-Tschegg S, Heinze G, Holper B, Milne T, Berger G, Vecsei V. "Fatigue Strength of Locking Screws and Prototypes Used in Small-Diameter Tibial Nails: A Biomechanical Study." J Trauma;472:379-84(1999)
    [25] Lanning D, Haritos GK, Nicholas T. "Notch size effects in HCF behavior of Ti-6Al-4V." Int J Fatigue 1999;21(7):643–52
    [26] Dick JC, Bourgeault CA. "Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants." Spine (Phila Pa 1976) 2001; 26:1668–1672.
    [27] Frigg, R., 2003. "Development of the locking compression plate." Injury 34, S-B6–S-B10
    [28] Kanchanomai C, Phiphobmongkol V. "Fatigue failure of an orthopedic implant –
    a locking compression plate." Eng Fail Anal 2008;15:521–30.
    [29] Ching-Chi, H., Amaritsakul, Y., et al. "Notch sensitivity of titanium causing contradictory effects on locked nails and screws". Medical Engineering & Physics. 2010, vol. 32, p. 454-460
    [30] Dewo ,P., van der Houwen, E.B., Sharma,P.K.. "Mechanical properties of Indonesian-made narrow dynamic compression plate" Journal of the Mechanical
    Behavior of Biomedical Materials 13(2012)93-101
    [31] Hayes JS, Richards RG (2010) "The use of titanium and stainless steel in fracture
    fixation." Expert Rev Med Devices 7(6):843–853
    [32] E.J.Hearn, Mechanics of materials2, Butterworth-Heinemann,1997
    [33] Yung-Li Lee, Maek E. Barkey, Hong-Tae Kang ,Metal Fatigue, Butterworth- Heinemann,2012
    [34] P. Kuhn and H. F. Hardrath, "An engineering method for estimating notch size effect in fatigue tests of steel." NACA TN 2805 (1952).
    [35] Peterson, R.E, Metal Fatigue, McGraw-Hill,1959
    [36] Yao W. "Stress intensity approach for predicting fatigue life." Int J Fatigue 1993;15:243
    [37] Weixing Y, Kaiquan X, Yi G. "On the fatigue notch factor." Int J Fatigue 1995;17(4):245–51.
    [38] Qylafku G, Azari Z, Kadi N, Gjonaj M, Pluvinage G. "Application of a new model proposal for fatigue life prediction on notches and key-seats." Int J Fatigue 1999;21:753–60.
    [39] Adib H, Pluvinage G. "Theoretical and numerical aspects of volumetric approach for fatigue life prediction in notched components." Int J Fatigue
    2003; 25(1): 67-76.
    [40] Adib-Ramezani H, Jeong J. "Advanced volumetric method for fatigue life prediction using stress gradient effects at notch root." Comput Mater Sci 2007;39(3):649–63.

    QR CODE