簡易檢索 / 詳目顯示

研究生: 蔣安東
AN-TUNG CHIANG
論文名稱: 研究晶圓廠基礎點系統建置策略
Research on construction strategies of fab base point system
指導教授: 游進陽
Chin-Yang Yu
口試委員: 蔡孟涵
Meng-Han Tsai
蔡孟霖
Meng-Lin Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 高階科技研發碩士學位學程
Executive Master of Research and Development
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 86
中文關鍵詞: 線寬電腦整合製造(CIM)製造執行系統(MES)設備自動化程式(EAP)配方管理系統(RMS)統計製程控制(SPC)故障檢测與分類系统(FDC)半導體設備通訊標準(SECS)
外文關鍵詞: linewidth, Computer-Integrated Manufacturing (CIM), Manufacturing Execution System(MES), Equipment Automation Program(EAP), Recipe Management System(RMS), Statistical Process Control(SPC), Fault Detection Classification(FDC), SEMI Equipment Communications Standard(SECS)
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討晶圓廠製造晶圓的背後,面對眾多高精密設備、精細生產配方、量測配方以及大量多元的資料收集、分析及判讀,這些工作已不再能依賴大量人力記憶生產規範及紀錄資訊,持續穩定地進行生產。特別是在發現晶圓異常時,往往已是眾多晶圓片等待判定報廢的情況。因此,仰賴電腦系統彼此協同作業,協助晶圓廠內各單位人員降低執行各種人工標準作業程序的種類與數量,已成為必然之舉。

    然而,放眼望去,全球晶圓製造在新冠疫情發生後,才驚覺台灣晶圓製造有著獨到的技術方法。即使是以科技及工業能力自豪的美國、德國及日本,也是半導體設備的主要製造商,但他們國內擁有各類科學頂尖人才和軟硬體資源,卻仍爭相爭取台灣大廠在其國家設廠。他們無法突破奈米線寬與量產良率的障礙。

    憑藉多年在台灣大廠從事電腦整合製造(CIM)自動化的經驗,本研究將以晶圓廠獨有的基礎生產應用系統進行研究,分析並歸納出晶圓廠基礎系統建置策略。這對晶圓廠內的生產單位、設備工程師以及製程工程師來說,提升良率、產能及線寬技術都是至關重要的,瞭解MES、EAP、RMS、SPC、FDC 等系統彼此之間與晶圓廠組織任務的關聯,以及對建構晶圓廠自動化應該採取的步驟以及在日後維護的策略,透過以SECS 通訊協議為基礎,連結半導體設備,收集資訊及控制設備、能夠快速發現問題、高效分析問題,並準確控制及解決問題。

    關鍵字: 線寬、電腦整合製造(CIM)、製造執行系統(MES)、設備自動化程式(EAP)、配方管理系統(RMS)、統計製程控制(SPC)、故障檢测與分類系统(FDC)、半導體設備通訊標準(SECS)


    This study aims to explore the intricacies behind the manufacturing of wafers in semiconductor factories, which involve numerous high-precision equipment, intricate production formulas, measurement formulas, and extensive data collection, analysis, and interpretation. These tasks can no longer rely solely on extensive human memory of production norms and record-keeping to ensure continuous and stable production. Particularly when wafer abnormalities are detected, it often occurs with numerous wafers awaiting assessment for scrapping. Therefore, relying on computer systems to collaborate and assist various units within the wafer factory in reducing manual standard operating procedures has become inevitable.

    However, upon closer inspection, the global wafer manufacturing industry only truly recognized Taiwan's unique technological methods after the outbreak of the COVID-19 pandemic. Even countries like the United States, Germany, and Japan, known for their technological and industrial prowess and major semiconductor equipment manufacturers, are competing to attract major Taiwanese factories to establish plants in their countries. They struggle to overcome barriers such as nanometer linewidths and mass production yields.

    Drawing on years of experience in computer-integrated manufacturing (CIM) automation at major Taiwanese factories, this study will focus on the unique foundational production application systems in wafer factories to analyze and summarize the strategies for building foundational systems in wafer factories. This is crucial for production units, equipment engineers, and process engineers within wafer factories as improving yields, capacity, and linewidth technology are paramount. Understanding the interrelationships between systems such as MES, EAP, RMS, SPC, FDC, and the organizational tasks of the wafer factory, as well as the steps to take in constructing wafer factory automation and strategies for maintenance in the future, is essential. Through linking semiconductor equipment via the SECS communication protocol, collecting information, controlling equipment, quickly identifying problems, efficiently analyzing issues, and accurately controlling and resolving them can be achieved.

    Keywords: linewidth, Computer-Integrated Manufacturing (CIM), Manufacturing Execution System(MES), Equipment Automation Program (EAP), Recipe Management System(RMS), Statistical Process Control(SPC), Fault Detection Classification(FDC), SEMI Equipment Communications Standard(SECS)

    摘要 I ABSTRACT II 誌謝 IV 目錄 VI 表目錄 VIII 圖目錄 IX 第一章、 緒論 1 1-1. 研究背景與動機 2 1-2. 研究對象 3 1-3. 研究目的 5 1-3-1. 了解晶圓廠基礎點系統與加速解決新問題、突破製程的關係 5 1-3-2. 了解晶圓廠基礎點系統與晶圓生產良率提高的關聯 7 1-3-3. 了解晶圓廠基礎點系統與晶圓推向穩定量產的關係 9 1-4. 論文架構 10 1-5. 論文章節 11 第二章、 文獻探討與晶圓廠基礎點系統說明 13 2-1. 電腦整合製造(CIM)在晶圓廠和IC製造中的角色 13 2-2. 半導體協會倡議認知人工智慧驅動之未來自主工廠四階段及基處點系統 17 2-3. 晶圓廠資訊整合技術的重要 20 第三章、 研究方法 25 3-1. 晶圓廠系統主從性 25 3-2. 晶圓廠系統分散性 29 3-3. 晶圓廠系統資訊即時調度 32 3-3-1. 基礎點系統的架構細化 37 3-4. 晶圓廠組織任務與系統對應關係 40 3-4-1. CIM電腦整合製造之運作 42 第四章、 研究分析 45 4-1. 晶圓廠需求分類 45 4-1-1. 依目的分類 45 4-1-2. 依組織分類 49 4-2. 晶圓廠需求對應系統分類 52 4-2-1. 系統建置 56 4-3. 晶圓廠生產資訊調度手段 58 4-3-1. 傳遞資訊項目化 62 4-3-2. 傳遞資訊容器的標準化 68 4-3-3. 傳遞項目內容標準化 71 4-4. 晶圓廠系統執行順序與維運 75 第五章、 結論與建議 79 5-1. 結論 79 5-2. 建議 81 第六章、 參考文獻 84

    [1] CIM, The role of CIM for the fab of the future and custom IC manufacturing
    Published in: Proceedings of 1994 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (ASMC)
    https://ieeexplore.ieee.org/document/588230
    [2] MES, Manufacturing execution system (MES) for semiconductor manufacturing
    Published in: IEEE International Conference on Systems, Man and Cybernetics
    https://ieeexplore.ieee.org/document/1173220?denied=
    [3] AMHS, Manufacturing execution system (MES) for semiconductor manufacturing
    Published in: 2021 32nd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)
    https://ieeexplore.ieee.org/document/9435681/authors#authors
    [4] SPC, Use of SPC (Statistical process control) for Quality Control and Management of an Automatic Production Line
    Published in: 2021 12th National Conference with International Participation (ELECTRONICA)
    https://ieeexplore.ieee.org/document/9513725
    [5] APC, Advanced Process Control: benefits for photolithography process control
    Published in: 13th Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference. Advancing the Science and Technology of Semiconductor Manufacturing. ASMC 2002 (Cat. No.02CH37259)
    https://ieeexplore.ieee.org/document/1001582
    [6] FDC, (Fault Detection and Classification) Big data analytic for multivariate fault detection and classification in semiconductor manufacturing
    Published in: 2017 13th IEEE Conference on Automation Science and Engineering (CASE)
    https://ieeexplore.ieee.org/document/8256190?denied=
    Published in: IEEE Transactions on Automation Science and Engineering ( Volume: 17, Issue: 4, October 2020)
    https://ieeexplore.ieee.org/document/9066890
    [7] YMS, (Yield Management System) Yield analysis and data management using Yield Manager/sup TM/
    Published in: IEEE/SEMI 1998 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (Cat. No.98CH36168)
    https://ieeexplore.ieee.org/document/731377
    [8] EAP, (Equipment Automation Program) System and method for equipment automation program refresh
    United States Patent Application Publication
    Pub. Date: Dec. 30, 2004
    Pub. No.: US 2004/0268336A1 Lu et al.
    Inventors: Chen-Jen Lu, Kaohsiung (TW); Alton Chou, Tainan (TW)
    Correspondence Address: THOMAS, KAYDEN, HOSTEMEYER & RISLEY LLP 100 GALLERA PARKWAY SUTE 1750 ATLANTA, GA 30339 (US)
    https://patents.google.com/patent/US20040268336A1/en
    [9] RMS, Implementation of an advanced Recipe Management System in a fully automated 300mm fab
    Published in: 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014)
    https://ieeexplore.ieee.org/document/6847024
    [10] Message Bus, Design and implementation of multi-segment message bus in platform of SOA based supervisory control system
    Published in: 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2)
    https://ieeexplore.ieee.org/document/8245405?signout=success
    [11] 以資訊技術打造台積電世界級的半導體企業
    https://www.mgt.ncu.edu.tw/~ckfarn/ppt/201003_IT%20in%20TSMC.ppt
    [12] CIM自動化提升半導體工廠效能
    https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?id=0000343920_617L9KRH1FEOXR1MJTRSP

    無法下載圖示 全文公開日期 2034/05/15 (校內網路)
    全文公開日期 2034/05/15 (校外網路)
    全文公開日期 2044/05/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE