簡易檢索 / 詳目顯示

研究生: 黃義欽
Yi-Chin Huang
論文名稱: 陰離子型水性聚胺酯合成與架橋反應、聚集結構之研究
A Study on the Synthesis、Crosslinking and Aggregate structure of m-TMXDI based Anionic Aqueous Polyurethane Dispersions
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 馬振基
Chen-Chi M. Ma
張豐志
Feng-Chih Chang
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 95
中文關鍵詞: 預聚合法陰離子架橋自身縮合
外文關鍵詞: Crosslinking, Self-condensation
相關次數: 點閱:185下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的是利用預聚合法(Prepolymer mixing process)合成m-TMXDI based的陰離子型水性PU,利用GPC、FTIR、13C-NMR 鑑定分子結構,及探討DMPA用量對水性PU的物理化學性質影響。結果顯示隨著DMPA用量增加,水性PU的親水能力隨著增加,而平均粒徑逐漸減小,黏度也相對增加。
    由於本實驗合成的水性PU分子結構中含有很多可架橋的>N-H基,當選用PMMF (Partially methylated melamine formaldehyde)做為水性PU架橋劑,可能生成多數的分支(Branch)與部份架橋(Partially crosslinking)結構。利用剛性擺錘振動減衰儀(Rigid-body Pendulum Rheometer)測試觀察在恆溫下的熱硬化行為。結果顯示在熱硬化過程中,水性PU與PMMF進行架橋時,PMMF自身縮合反應(Self-condensation)同時發生。而且PMMF自身縮合反應速率低於PU/PMMF的架橋反應。利用TGA熱分析,也可以證實PMMF自身縮合反應在120~150oC溫度下確實發生。實驗結果也發現30phr是最適量的PMMF架橋劑,120oC是最適當的反應溫度。
    利用動態機械性質分析(Dynamic Mechanical Analysis),發現當測試溫度低於玻璃轉移溫度以下,其儲存模數(Storage modulus)隨著PMMF用量增加而降低,這是因為受到分子鏈排列程度(Packing ability)的影響。但是當溫度升至-20oC時,很明顯的,儲存模數(Storage modulus)反而隨著PMMF用量增加而略為增加,這是因為多數的分支(Branch)與部份架橋(Partially crosslinking)結構會限制高分子鏈的運動。另外,利用拉力試驗機(Tensile testing machine)測試,也發現PMMF用量與反應溫度對力學性質有明顯的影響,當PMMF用量增加或提高反應溫度時,應變量(Strain) 會明顯降低,應力(Stress)則相對提高。這也是因為多數的分支(Branch)與部份架橋(Partially crosslinking)結構形成的影響。


    The objective of this study is to prepare the isocyanic acid, m-phenylenediiso- propylidene (m-TMXDI) based poly(urethane-urea) dispersions containing various amount of DMPA. The colloidal stability of poly(urethane-urea) dispersions arose entirely from the presence of ionized carboxylic acid groups. The chemical structure of poly(urethane-urea) dispersions with various amount of DMPA were identified by FTIR and 13C NMR analysis. The test results showed the hydrophilicity of poly(urethane-urea) dispersions were increased with increasing in DMPA content. The average particle size of poly(urethane-urea) dispersions were decreased with an increase in DMPA content, and this leaded to an increase in viscosity.
    The anionic poly(urethane-urea) dispersion has a large number of >N-H crosslinking or branching sites in urethane and urea groups per molecule, that allows a large number of partially methylated melamine formaldehyde (PMMF) to couple into elastic PUD backbone to form branched structure with partially crosslinking. A rigid-body pendulum rheometer was used to observe the isothermal cure behavior of anionic poly(urethane- urea) dispersion crosslinked with different amount of PMMF. The test results showed that cure response of PU dispersion crosslinked with PMMF was a function of the concentration of PMMF, and indicated that 30 phr PMMF used can be the optimum amount of crosslinking agent, the reaction at 120oC is the optimum temperature for the curing process. In addition, PMMF self-condensation could take place during the curing process. The self-condensation of PMMF also can be monitored by thermal gravimetric method.
    It is observed from the dynamic mechanical analysis that non-crosslinked PUD exhibits high storage modulus value than PMMF crosslinked PUD at the temperature scanned below glassy region, this is attributed to the polymer packing ability. However, a turning point occurs at temperature scanned higher than -20oC, PMMF crosslinked PUD exhibit higher storage modulus than non-crosslinked PUD, due to PMMF branched PUD structure is formed with partially crosslinking, which can restrict the motion of polymer chains. It was further shown that the tensile properties were strongly influenced by the concentration of PMMF and curing temperature. This strong decrease in strain at break with high tensile strength is also reasonable to assume that PMMF branched PU is formed with partially crosslinking.

    Abstract (in Chinese) I Abstract II Acknowledgment IV Contents V List of figures and tables VIII Chapter 1 Introduction 1 1.1 Introduction of aqueous polyurethane dispersions 2 1.2 Chemistry and dispersions 2 1.2.1 PU chemistry 2 1.2.2 Ionomer 5 1.2.3 Non ionomer 5 1.2.4 Dispersion mechanism 6 1.2.5 Particle stabilization 6 1.3 Preparation process 7 1.3.1 Acetone process 7 1.3.2 Prepolymer mixing process 8 1.3.3 Melt dispersion process 8 1.3.4 Ketimine and Ketazine processes 8 1.4 Dispersion and film properties 9 1.5 Crosslinking of aqueous polyurethanes 10 1.5.1 Azilidines 11 1.5.2 Carbodiimides 11 1.5.3 Blocked isocyanates 11 1.5.4 Radiation induced crosslinking 11 1.5.5 Melamine-formaldehyde 12 1.6 Aqueous polyurethane/acrylic emulsion hybrid 13 References 13 Chapter 2 Synthesis and characterization of Isocyanic acid, m-phenylenediiso- propylidene based poly(urethane-urea) dispersions containing different amount of DMPA 26 Abstract 27 2.1 Introduction 28 2.2 Experimental 29 2.2.1 Materials 29 2.2.2 Preparation of anionic poly(urethane-urea) dispersions 29 2.2.3 Characterization 30 2.3 Results and discussion 31 2.3.1 Synthesis of anionic poly(urethane-urea) dispersions 31 2.3.2 Chemical structure of poly(urethane-urea) dispersions 34 2.3.3 Effect of DMPA content on colloidal properties 35 2.4 Conclusion 36 References 37 Chapter 3 Curing behavior of anionic poly(urethane-urea) dispersion crosslinked with partially methylated melamine formaldehyde 55 Abstract 56 3.1 Introduction 57 3.2 Experimental 58 3.2.1 Materials 58 3.2.2 Sample preparation 59 3.2.3 Rigid-body pendulum rheometer measurement 59 3.2.4 Thermal gravimetric analysis 60 3.2.5 Structure characterization 60 3.3 Results and discussion 61 3.3.1 Curing behavior of PU dispersion crosslinked with PMMF 61 3.3.2 Thermal degradation behavior 62 3.3.3 Crosslinking mechanism 63 3.4 Conclusions 65 References 65 Chapter 4 Structure- property relationsips of PMMF crosslinked PU dispersions 75 Abstract 76 4.1 Introduction 77 4.2 Experimental 78 4.2.1 Materials 78 4.2.2 Sample preparation 78 4.2.3 Dynamic mechanic analysis 78 4.2.4 Tensile properties analysis 78 4.3 Results and discussion 79 4.3.1 Dynamic mechanic properties analysis 79 4.3.2 Tensile properties analysis 80 4.4 Conclusions 81 References 81 Chapter 5 Conclusions 91 List of publications 94 Introduction to the author 95 List of figures and tables Figure index Scheme 1-1 Acetone process 17 Scheme 1-2 Prepolymer mixing process 18 Scheme 1-3 Melt dispersion process 19 Scheme 1-4 Ketimine and Ketazine process 20 Scheme 1-5 Crosslinking with polyfunctional aziridines 21 Scheme 1-6 Crosslinking with multifunctional carbodiimide 22 Scheme 1-7 Crosslinking with blocked isocyanate 23 Scheme 1-8 Crosslinking with melamine formaldehyde 24 Scheme 2-1 Prepolymer mixing process 47 Figure 1-1 Schematic representation of electric double layer 25 Figure 2-1 Chemical structure of m-TMXDI 48 Figure 2-2 FTIR spectra of the polyurethane-urea) dispersions containing different DMPA content 49 Figure 2-3 13C-NMR spectrum of polyurethane dispersions containing different DMPA content 50 Figure 2-4 Chemical structure of anionic poly(urethane-urea) dispersion 51 Figure 2-5 Effect of DMPA content on the particle size and distribution of the dispersions 52 Figure 2-6 Effect of DMPA content on the average particle size and viscosity of the dispersions 53 Figure 2-7 Thermal gravimetric curves of anionic poly(urethane-urea) dispersions 54 Figure 3-1 Chemical structure of partially methylated melamine formaldehyde 67 Figure 3-2 The device of rigid-body pendulum rheometer 68 Figure 3-3 The oscillation pattern of the pendulum 69 Figure 3-4 Isothermal curing behavior of PU dispersion crosslinked with various amount of PMMF (a)at120oC ; (b)at150oC 70 Figure 3-5 A comparison of the curing curves of PMMF crosslinked PU dispersion and PMMF self-condensation 71 Figure 3-6 Thermal gravimetric curves of PMMF self-condensation 72 Figure 3-7 Thermal gravimetric curves of PU dispersion crosslinked with PMMF 73 Figure 3-8 FTIR spectra of PU dispersion crosslinked with various amount of PMMF 74 Figure 4-1 (a)Storage modulus, (b) Loss modulus and (c) Loss tangent versus temperature plots of PUD crosslinked with PMMF 86 Figure 4-2 Stress strain curve of PUD crosslinked with various amount of PMMF (120oC x 30min.) 87 Figure 4-3 Stress strain curve of PUD crosslinked with various amount of PMMF (150oC x 30min.) 88 Figure 4-4 The effect of curing temperature on the tensile properties of PUD crosslinked with PMMF 89 Figure 4-5 Possible approaches of PUD crosslinked with PMMF 90 Table index Table 2-1 Compositions of NCO terminated prepolymer 39 Table 2-2 Compositions of water dispersion and chain extension 40 Table 2-3 Average molecular weight of NCO term inated prepolymer 41 Table 2-4 Molecular weight of chain extended poly(urethane-urea) dispersions 42 Table 2-5 Ionic content of anionic poly(urethane-urea) dispersions 43 Table 2-6 Assignment of IR spectrum of anionic poly(urethane-urea) dispersions 44 Table 2-7 Assignment of 13C chemical shifts of anionic poly(urethane-urea) dispersions 45 Table 2-8 Colloid properties of anionic poly(urethane-urea) dispersions46 Table 4-1 The glass transition temperature of PUD crosslinked with various amount of PMMF 83 Table 4-2 Mechanical properties of PUD crosslinked with PMMF (120oC x 30min.) 84 Table 4-3 Mechanical properties of PUD crosslinked with PMMF (150oC x 30min.) 85

    1. D. Dieterich, Progr Org Coat 9, 281 (1981)
    2. J. W. Rosthauser, K. Nachtkamp, K. C. Frisch, D. Klempner, Adv in Urethane Sci and Technol. Technomic, Lancaster (1987)
    3. R.E. Tirpak, P. H. Markusch, Proc of water-borne and higher solid coatings symposium, p 308 (1990)
    4. B. K. Kim, J. C Lee, J Appl Polym Sci 58, 1117 (1995)
    5. B. K. Kim, J. C. Lee, Polymer 37, 469 (1996)
    6. C. Hepburn, Polyurethane Elastomers, second edition, Elsevier Appl Sci, London, (1993)
    7. D. Dieterich, E. Grigat, W Hahn In: Oertel G (ed) Polyurethane Handbook. Hanser Publichers, New York (1985)
    8. B. K. Kim, Y. M. Lee, J Macromol Sci-Pure Appl Chem, A29(12), 1207 (1992)
    9. B. K. Kim, C. K. Kim, H. M. Jeong, J Macromol Sci-Pure Appl Chem A32(11), 1905 (1995)
    10. Y. M. Lee, J. C. Lee, B. K. Kim, Polymer 35(5), 1095 (1994)
    11. T. K. Kim, B. K. Kim, Colloid Polym Sci, 269, 889 (1991)
    12. H. A.Salah, K. C. Frisch, H. X. Xiao,J. A. Mclean, J Polym Sci Part A,25, 2127 (1987)
    13. Y. Chen, Y. L. Chen, J Appl Polym Sci 46, 435 (1992)
    14. W. C. Chan, S. A. Chen, Polymer 29, 1995 (1998)
    15. J. S. Lee, B. K. Kim, Progr Org Coat 25(4), 311 (1995)
    16. J. C. Lee, B. K. Kim, J Polym Sci Part A 32, 1983 (1994)
    17. Y. M. Lee, B. K. Kiln, J Macromol Sci- Phys B33(2), 243 (1994)
    18. C. K. Kim, B. K. Kim, J Appl Polym Sci 43, 2295 (1991)
    19. D. Grahame, Chem. Rev. 41(3), 441 (1947)
    20. R. J. Hunter, “Zeta Potential In Colloid Science, Principles And Applications”, Academic Press, UK (1988)
    21. B. K. Kim, J. C. Lee, J Polym Sci, Part A 34, 1095 (1996)
    22. S. L. Hsu, H. X. Xiao, H. H. Szmant, K. C. Frisch, J Appl Polym Sci 29, 2467 (1984)
    23. H. X. Xiao, K. C. Frisch, "Advanced in urethane ionomers". Technomic, Basel (1995)
    24. G. N. Chen, K. N. Chen, J Appl Polym Sci 67, 1661 (1998)
    25. R. G. Coogan, Progr Org Coat 32, 51 (1997)
    26. Z. W. Wicks, Progr Org Coat 3, 73 (1975)
    27. T. A. Speckhard, K. S. Hwang, B. S. Lin, S. Y. Tsay, M. Koshiba, Y. S. Ding, S. L. Cooper, J Appl Polym Sci 30, 647 (1985)
    28. W. Y. Chiang, W. T. Lin, J Appl Polym Sci 51, 1901 (1994)
    29. B. K. Kim, K. H. Lee, Polymer 37, 2251 (1996)
    30. B. V. Derjaguin, L. A. Landau, Acta Physiochem (USSR) 14, 633.(1941)
    31. J. Z Lai, Y.C. Chang, J.T. Yeh, K. N. Chen, J Appl Polym Sci 97, 1997 (2004)
    32. B. K. Kim, K. H. Lee, H. D.Kim, J Appl Polym Sci 60, 799 (1996)
    33. K. Mequanint, R. Sanderson, Polymer 44, 2631 (2003)
    34. F. N. Jones, G. Chua, U. Samaraweerab, Progr Org Coat 24, 189 (1994)
    35. W. J. Blank, V. J. Tramontano, Progr Org Coat 27, 1 (1996)
    36. D. M. Snyder, T. J. Vuk, J Appl Polym Sci 46, 1301 (1992)
    37. R. P. Subrayan, F. N. Jones, J Appl Polym Sci 62, 1237 (1996)
    38. R. Narayan, D. K. Chattopadhyay,1 B. Sreedhar, K. V. S. N. Raju, N. N. Mallikarjuna, T. M. Aminabhavi, J Appl Polym Sci 99, 368 (2006)
    39. W. J. Blank, Coat Technol 51, 61-70 (1979)
    40. T. T. Chang, Anal Chem 66, 3267 (1994)
    41. D. R. Bauer, R. A. Dickie, J Polym Sci, Polym Phys Ed 18, 1997 (1980)
    42. W. J. Blank, W. L. Hensley, J Paint Technol 46, 593 (1974)
    43. R. Saxon, F. C. Lestienne, J Appl Polym Sci 8, 475 (1964)
    44. Loewrigkeit, P.; van Dyk, K. A. U.S. Patent 4,644,030 (1987)
    45. Vijayendran, B. R.; Derby, R.; Gruber, B. A. U.S. Patent 5,173,526 (1992)
    46. Hirose, M.; Kadowaki, F.; Zhou, Progr Org Coat 31,157 (1997)
    47. Kukanja, D.; Golob, J.; Zupancˇicˇ-valant, A.; Krajnc, M. J Appl Polym Sci 78, 67 (2000)
    48. Frisch, K. C.; Xiao, H. X. J Coat Technol 61, 770 (1989)
    49. D. Bontinck, M. Tielemans, J.M. Lottz, in: Proceedings of the PRA 14th International Conference on Coatings, Community and Care, Copenhagen, Paper 21 (1994)
    50. Y.H. Jan Hwang, C.Y. Shih, H.S. Li, in: Proceedings of the 22nd Symposium on Waterborne, High-Solids, Powder Coatings p. 211 (1995)
    51. R.M. Rynders, C.R. Hegedus, A.G. Gilicinski, J Coat Technol 67(845), 59 (1995)
    52. R. Derby, B. Gruber, R. Klein, J Am Paint J 79(21), 57 (1995)
    53. G. Chen, K. Chen, J Appl Polym Sci 71(6),903 (1999)

    QR CODE