簡易檢索 / 詳目顯示

研究生: 林國泰
Kuo-tai Lin
論文名稱: 應用結構方程模式探討智慧電表居家採用意向之實證研究
Empirical Study of Residential Smart Meter Adoption Using Structural Equation Modeling
指導教授: 周瑞生
Jui-sheng Chou
口試委員: 鄭明淵
Min-yuan Cheng
楊亦東
I-tung Yang
謝佑明
Yo-ming Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 106
中文關鍵詞: 智慧電表結構方程模式採用意願指數重要度與感受程度二維分析市場策略
外文關鍵詞: smart meter, structural equation modeling, consumer adoption propensity index, importance-consumer perceived expectation, operations
相關次數: 點閱:247下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來全球暖化、極端氣候等現象日趨嚴重,促使國際間對於節能永續發展的議題愈益重視。基於當前電能供給與國家經濟發展及民生需求息息相關,更因臺灣適逢用戶端之電力網路的基礎設備持續老化,無形中也造成電力的額外損失。爰此,先進國家積極開源節流,研擬具體節約措施與管理對策。有鑑於各國電能管理的近程發展,多提出節能控制儀器智慧電表,希冀經由自動化耗能監測機制,採擷使用者的用電態樣,藉以優化用電趨勢,改善能源營運績效。臺灣目前正處智慧電網初期部署階段,住宅用電尚未普及安裝智慧電表。因此,探討居家空間智慧電表的採用傾向與推行策略,是當前之課題所在。本文首先從文獻回顧分析,歸納瞭解使用者實際採用的考量因子,進而用以評估一般住宅用戶在現代化科技應用的接受程度。資料收集採問卷填答方式,隨機方便抽樣訪談,量化使用者對智慧電表的預期接受程度。分析方法則係應用結構方程模式,驗證評估指標對於構面值的解釋能力。其次,藉由分析結果推求消費者採用意願指數作為現況基值,並從指標重要性與使用者感受程度二維分析,辨識影響採用傾向的重要因素,反饋規劃後續推行策略的實證依據。文末則從量化分析結果配合受訪者的有效填答建議,探討質性意涵。研究發現可釐清使用者主要的考量面向暨其因果關連,用以整體評估安裝使用意願,並做為日後能源相關管理單位從社會人文層面,於科技行銷推廣的持續性策略評估與強化重點,促成永續節能發展的目標。


    Global warming and extreme weather have been increasingly severe in recent years, prompting countries worldwide to pay attention to energy conservation and sustainable development. Power supply is closely related to the economic development and daily needs of the people in a country. However, in Taiwan, the infrastructure of electrical grids in the consumer end is deteriorating, which intangibly results in additional electricity losses. Thus, numerous developed countries have actively developed alternative energy sources and formulated measures and management strategies to reduce energy consumption. In the recent development of power management, numerous countries have proposed using smart meters for energy-conservation control. Specifically, they intend to use an automatic energy consumption monitoring system to record the electricity consumption pattern of consumers, thereby optimizing an electricity consumption trend and improving the efficiency of energy usage. Taiwan is currently at the initial stage of smart grid deployment. Smart meters have not been widely installed to monitor residential electricity consumption; therefore, investigating the adoption propensity and implementation strategies of smart meters in residential buildings is a critical research topic at present. This study began with a literature review to identify the factors considered by users in their actual adoption of smart meters and subsequently assessed general residential consumers’ acceptance degree of contemporary technologies. Structured questionnaires were used to interview a randomly selected sample to quantify users’ expected acceptance degree to the use of smart meters. Structural equation modeling was employed to verify the explanatory power between assessment criteria and dimensions. Based on the analysis result, the consumer adoption propensity index was employed as the baseline for the current consumers’

    willingness to use smart meters. A two-dimensional analysis based on index importance and perceptions of potential users was conducted to identify the crucial index that influenced the adoption propensity. The indicatiors served as the feedback for the basis of subsequent implementation strategies. Implications were discussed qualitatively at the end of this paper. The analytical findings clarify the primary factors considered by consumers and can be used to assess the intention of people to install smart meters. Therefore, energy management authorities can adopt a social and humanistic perspective to continually enhance strategies for technology marketing, thereby achieving the goals of energy conservation and sustainable
    development.

    中文摘要........................................................................................................................I ABSTRACT................................................................................................................II 致謝.............................................................................................................................IV 目錄...............................................................................................................................V 圖目錄......................................................................................................................VIII 表目錄.........................................................................................................................IX 第一章 緒論……………………………………………….………………..…….1 1.1 研究背景…………………..……………………………………...……..1 1.2 研究動機與目的………………………….………..……………………..1 1.3 研究流程…………………..……..………………………….….……...2 第二章 文獻回顧…………………………………………………………………4 2.1 臺灣現行電表佈設……………………………………………...……..4 2.1.1 傳統機械電表與智慧電表之特性……………………………………..4 2.1.2 智慧電表之基礎簡要………………………………………...………...5 2.2 目前臺灣智慧電表概況…………….…………………………...…………..5 2.3 智慧電表的效益與使用風險……………………………………...………..7 2.4 新興科技接受程度評估理論………………………………………...……..8 2.5 理論模式之因果路徑假設…………………………………………...……..11 2.5.1 預期效用…………………………………………......………………..11 2.5.2 易於使用性……………………………………...……………...……..12 2.5.3 預期風險………………………………………………………………12 2.5.4 用戶期望滿意度………………………………………………………13 2.5.5 能源成本隱私安全性…………………………………………………13 2.5.6 社會影響………………………………………………………………13 2.5.7 資訊回饋功能與科技複雜性…………………………………………14 第三章 研究方法………………………………………………………………..…15 3.1 結構方程模式………………………………………………………………15 3.2 模式評估…….………………………………………………………………17 3.2.1 信效度分析……………………………………………………………17 3.2.2 適配度分析……………………………………………………………18 3.2.2.1卡方自由度比……………………………………………………18 3.2.2.2配適度指標………………………………………………………19 3.2.2.3調整後適配度指標………………………………………………19 3.2.2.4增值配適指標……………………………………………………20 3.2.2.5比較配適度指標…………………………………………………20 3.2.2.6平均近似誤差均方根……………………………………………20 3.3 中介與調節效果…………………………….………………………………21 3.4 消費者採用意願指數(CAP Index) …………………………………………22 3.5 重要性-感受程度分析法…………………..…………………………..……23 3.6 質性分析………………….…………………………………………………24 第四章 實證分析結果……………………………………………………………..25 4.1 抽樣調查與敘述性統計分析…………………...…………………………..25 4.2 智慧電表採用傾向影響指標之驗證性分析…………..…………………...28 4.3 採用傾向結構理論模式修正………………………………….……………32 4.4 中介與調節之影響……………………..……..……………….……………36 4.5 採用意願指數………………………..…………………..….………………37 4.6 採用意願之衡量指標重要性與使用者接受程度…………...………..41 4.7 管理應用策略分析……………………………………...…………………..45 第五章 結論與建議……………………………………………………………..50 5.1 研究結論…………………………………………………….……..…….50 5.2 研究建議與未來方向……………………………………………….……52 參考文獻…………………………………………………………………………….54 附錄A 臺灣版智慧電表問卷………………………………..…………………….62 附錄B SPSS AMOS 結構方程模式-圖(初始模式).………….……………….…70 附錄C SPSS AMOS 結構方程模式-圖(最終模式).……..……..….………….…71 附錄D SPSS統計調查資料敘述……….…………………………………………72 附錄E 問卷樣本編碼……………………...………………………………………75 附錄F 調節效果的階層迴歸分析………………………...………………………84 附錄G 研究資料程序分析…………..………...……….…………………………86

    參考文獻
    [1] Ab Rahman, N. H., and Choo, K.-K. R. (2015). A survey of information security incident handling in the cloud. Computers & Security, 49(0), 45-69.
    [2] Baron, R. M., and Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1183.
    [3] Benbasat, I., and Barki, H. (2007). Quo vadis, TAM? Journal of the Association for Information Systems, 8(4) , 211-218.
    [4] Brown, T. A. (2012). Confirmatory Factor Analysis for Applied Research. NY, USA: The Guilford Press.
    [5] California State University Sacramento (2012). Smart Grid Cyber Security Potential Threats, Vulnerabilities and Risks. Public Interest Energy Research (PIER) Program Interim Project Report.
    [6] Cheung, G. W., and Lau, R. S. (2007).Testing mediation and suppression effects of latent variables: Bootstrapping with structural equation models. Organizational Research Methods, 11(2), 296-325.
    [7] Chopra, A., and Kundra, V. (2011). A Policy Framework for The 21st Century Grid: Enabling Our Secure Energy Future. Executive Office of the President of the United State, Washington, D.C.
    [8] Chou, J.-S., and Yutami, Gusti Ayu Novi I. (2014). Smart meter adoption and deployment strategy for residential buildings in Indonesia. Applied Energy, 128(0), 336-349.
    [9] Chou, J.-S., and Telaga, A. S. (2014). Real-time detection of anomalous power consumption. Renewable and Sustainable Energy Reviews, 33(0), 400-411.
    [10] Chou, J.-S., and Yeh, C.-P. (2013). Influential constructs, mediating effects, and moderating effects on operations performance of high speed rail from passenger perspective. Transport Policy, 30(0), 207-219.
    [11] Creswell, J. W. (2002). Educational Research: Planning, conducting, and Evaluating Quantitative and Qualitative Research. NJ: Merrill/ Pearson.
    [12] Creswell, J. W., and Miller, D. L. (2000). Determining validity in qualitative inquiry. Theory into Practice, 39(3), 124-130.
    [13] Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
    [14] Depuru, S. S. S. R., Wang, L., and Devabhaktuni, V. (2011). Smart meters for power grid: Challenges, issues, advantages and status. Renewable and Sustainable Energy Reviews, 15(6), 2736-2742.
    [15] Doll, W.J., Raghunathan, T.S., Lim, J.-S. Gupta, Y.P. (1995). A Confirmatory Factor Analysis of the User Information Satisfaction Instrument. Institute for Operations Research and the Managemeni Sciences, 6(2), 177-188.
    [16] Efthymiou, C., and Kalogridis, G. (2010). Smart grid privacy via anonymization of smart metering data. Proc., First IEEE International Conference on Smart Grid Communications pp. 238-243.
    [17] El-Hawary, M. E. (2014). The smart grid—state-of-the-art and future trends. Electric Power Components and Systems, 42(3-4), 239-250.
    [18] Fornell, C., Johnson, M. D., Anderson, E. W., Cha, J., and Bryant, B. E. (1996). The American customer satisfaction index: Nature, purpose, and findings. Journal of Marketing, 60(4), 7-18.
    [19] Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research (JMR), 18(1), 39-50.
    [20] Gerpott, T. J., and Paukert, M. (2013). Determinants of willingness to pay for smart meters: An empirical analysis of household customers in Germany. Energy Policy, 61, 483-495.
    [21] Gignac, G.E. (2006). Self-reported emotional intelligence and life satisfaction: Testing incremental predictive validity hypotheses via structural equation modeling (SEM) in a small sample. Personality and Individual Differences, 40(8) , 1569-1577.
    [22] Giordano, V., and Fulli, G. (2012). A business case for Smart Grid technologies: A systemic perspective. Energy Policy, 40(0), 252-259.
    [23] Gurung, T. R., Stewart, R. A., Beal, C. D., and Sharma, A. K. (2015). Smart meter enabled water end-use demand data: platform for the enhanced infrastructure planning of contemporary urban water supply networks. Journal of Cleaner Production, 87(0), 642-654.
    [24] Hair, J. F., Black, W. C., Babin, B. J., and Anderson, R. E. (2010). Multivariate Data Analysis: A Global Perspective. NJ, USA: Pearson Education International.
    [25] Helms, M. (2013). The lessons of smart grid test in Boulder. Retrieved on Feb 19, 2014 form http://finance-commerce.com/2013/04/the-lessons -of-smart-grid- test-in-boulder/
    [26] Iacobucci, D. (2010). Structural equations modeling: Fit Indices, sample size, and advanced topics. Journal of Consumer Psychology, 20(1), 90-98.
    [27] Ioung, J. K., Dea, H. K., and Chung, J. H. (2004). Weekend activity and travel behavior in a developing country: empirical study using multilevel structural equation models. Transportation Research Record: Journal of the Transportation Research Board, 1894(1), 99-108.
    [28] Joo, Y.G., Sohn, S.Y. (2008). Structural equation model for effective CRM of digital content industry. Expert Systems with Applications, 34(1), 63-71.
    [29] Kabalci, E. (2015). A smart monitoring infrastructure design for distributed renewable energy systems. Energy Conversion and Management, 90(0), 336-346.
    [30] Kline, R. B. (2011). Principles and Practice of Structural Equation Modeling. NY: The Guilford Press.
    [31] Krishnamurti, T., Schwartz, D., Davis, A., Fischhoff, B., de Bruin, W. B., Lave, L., and Wang, J. (2012). Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters. Energy Policy, 41(0), 790-797.
    [32] Kuppam, A. R., and Pendyala, R. M. (2001). A structural equations analysis of commuters' activity and travel patterns. Transportation, 28(1), 33-54.
    [33] Lee, D. Y., and Lehto, M. R. (2013). User acceptance of YouTube for procedural learning: An extension of the technology acceptance model. Computers & Education, 61(0), 193-208.
    [34] Leeds, D. J. (2009). The smart grid in 2010: Market segments, applications and industry players. GTM Research, July.
    [35] Legris, P., Ingham, J., and Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204.
    [36] Lin, F., Fofanah, S. S., and Liang, D. (2011). Assessing citizen adoption of e-Government initiatives in gambia: A validation of the technology acceptance model in information systems success. Government Information Quarterly, 28(2), 271-279.
    [37] Liu, W., Wang, C., and Mol, A. P. J. (2013). Rural public acceptance of renewable energy deployment: The case of shandong in China. Applied Energy, 102(0), 1187-1196.
    [38] Mah, D. N.-y., van der Vleuten, J. M., Hills, P., and Tao, J. (2012). Consumer perceptions of smart grid development: Results of a Hong Kong survey and policy implications. Energy Policy, 49(0), 204-216.
    [39] Mah, D. N.-y., Wu, Y.-Y., Ip, J. C.-m., and Hills, P. R. (2013). The role of the state in sustainable energy transitions: A case study of large smart grid demonstration projects in Japan. Energy Policy, 63(0), 726-737.
    [40] Moore, S., and Butle, S. (2009). Active Smart Grid Analytics™ Maximizing Your Smart Grid Investment. Itron White Paper Itron Enterprise Edition™ Meter Data Management.
    [41] Ngar-yin Mah, D., van der Vleuten, J. M., Chi-man Ip, J., and Ronald Hills, P. (2012). Governing the transition of socio-technical systems: A case study of the development of smart grids in Korea. Energy Policy, 45(0), 133-141.
    [42] Preacher, K. J., and Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879-891.
    [43] Qiu, Z., and Deconinck, G. Smart meter's feedback and the potential for energy savings in household sector: A survey. Networking, Sensing and Control (ICNSC), International Conference on IEEE 2011 , pp. 281-286.
    [44] Ratchford, M., and Barnhart, M. (2012). Development and validation of the technology adoption propensity (TAP) index. Journal of Business Research, 65(8), 1209-1215.
    [45] Richards, N. M., and Solove, D. J. (2007). Privacy's other path: recovering the law of confidentiality. Geo. LJ, 96, 123-182.
    [46] Ro, H. (2012). Moderator and Mediator effects in hospitality research. International Journal of Hospitality Management, 31(3), 952-961.
    [47] Rogers, E. M. (1995). Diffusion of innovations. New York: Free Press.
    [48] Rossiter, J. R., and Braithwaite, B. (2013). C-OAR-SE-based single-item measures for the two-stage technology acceptance model. Australasian Marketing Journal (AMJ), 21(1), 30-35.
    [49] Sampson, S. E., and Showalter, M. J. (1999). The performance- importance response function: Observations and implications. Service Industries Journal, 19(3), 1-25.
    [50] Schumacker, Randall E. and Richard G. Lomax (2004). A beginner's guide to structural equation modeling, 2th ed., Mahwah. NJ: Lawrence Erlbaum Associates.
    [51] Shen, Bo (2013). Addressing energy demand through demand response: International experiences and practices. Department of energy under contract (No. DE-AC02-05CH11231). U.S: Department of energy under contract.
    [52] Shibl, R., Lawley, M., and Debuse, J. (2013). Factors influencing decision support system acceptance. Decision Support Systems, 54(2), 953-961.
    [53] Son, H., Park, Y., Kim, C., and Chou, J.-S. (2012). Toward an understanding of construction professionals' acceptance of mobile computing devices in South Korea: An extension of the technology acceptance model. Automation in Construction, 28(0), 82-90.
    [54] Sridhar, S., Hahn, A., and Govindarasu, M. (2012). Cyber–physical system security for the electric power grid. Proceedings of the IEEE, 100(1), 210-224.
    [55] Svensson, E., Lindoff, J., and Sutton, J. (2008). Predictive Modelling of Personality Traits–Implications for Selection of Operational Personnel. NATO HFM Symposium on Adaptability in Team Coalitions, Copenhagen, Denmark.
    [56] Taylor, S., and Todd, P. (1995). Assessing IT usage: The role of prior experience. MIS Quarterly, 19(4), 561-570.
    [57] Udo, G. J., Bagchi, K. K., and Kirs, P. J. (2010). An assessment of customers’ e-service quality perception, satisfaction and intention. International Journal of Information Management, 30(6), 481-492.
    [58] Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
    [59] Verbong, G. P. J., Beemsterboer, S., and Sengers, F. (2013). Smart grids or smart users? Involving users in developing a low carbon electricity economy. Energy Policy, 52(0), 117-125.
    [60] Xiong, B., Skitmore, M., Xia, B., Masrom, M. A., Ye, K., and Bridge, A. (2014). Examining the influence of participant performance factors on contractor satisfaction: A structural equation model. International Journal of Project Management 32 (3) 482-491.
    [61] Xu, Z., Xue, Y., and Wong, K. P. (2014). Recent Advancements on Smart Grids in China. Electric Power Components and Systems, 42(3-4), 251-261.
    [62] Yuan, J., Shen, J., Pan, L., Zhao, C., and Kang, J. (2014). Smart grids in China. Renewable and Sustainable Energy Reviews, 37(0), 896-906.
    [63] 台灣電力公司 (2013)。用戶資訊。引用於2014年3月18日,取自http://www.taipower.com.tw /content/new_info/new_info01.aspx。
    [64] 陳文瑞 (2011)。智慧電網之先進讀表發展與應用。NCP Newsletter,28(0),2-5。
    [65] 陳斌魁,籃宏偉 (2013)。智慧電網及推動再生能源面臨的挑戰。台灣能源及電力業之挑戰與機會(II) - 財團法人中技社。專題報告2013-04,111-140。
    [66] 黃台中 (2013)。能源局推智慧電網示範場域。引用於2014年3月18日,取自https://tw.news.yahoo.com/能源局-推智慧電網示範場域-213000858.html。
    [67] 經濟部能源局(2014)。能源報導一智慧電網總體規劃方案。引用於2014年10月29日,取自http://energymonthly.tier.org.tw/ outdatecontent. asp? ReportIssue =201401&Page=28&keyword=智慧電網總體規劃方案。
    [68] 經濟部能源局 (2012)。智慧電網總體規劃方案。引用於2013年12月29日,取自http://energymonthly.tier.org.tw/。
    [69] 經濟部能源局 (2013)。經濟部推廣酷涼節能服盼全民共同響應。引用於2014年3月26日,取自www.moea.gov.tw。
    [70] 經濟部能源局 (2014)。電價燃料條款機制自98年起實施,均公開上網並送立法院備查。引用於2014年11月22日,取自http://web3. moeaboe.gov.tw /ecw/PDA.aspx?kind=1&news_id=2549。
    [71] 蕭代基,張明杰 (2013)。推動「浮動電價」的前提及條件以及「浮動電價」計費公式及方式之合理性。台灣能源及電力業之挑戰與機會(II) - 財團法人中技社。專題報告2013-04,3-15。
    [72] David, A. de Vaus原。莊靜宜譯(2006)。社會研究法的設計。新北市:韋伯文化國際出版。(原著書名:Research Desigh in Social Research)

    QR CODE