簡易檢索 / 詳目顯示

研究生: 陳柏修
Bo-Xiu Chen
論文名稱: 應用於高速矽光子發射器之環形調變器設計
Design of Ring Modulators for High-Speed Silicon Photonics Transmitters
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
San-Liang Lee
宋峻宇
Jiun-Yu Sung
楊淳良
Chun-Liang Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 96
中文關鍵詞: 矽光子高速矽光子發射器環形調變器電光調變器四層脈衝振幅調變
外文關鍵詞: Silicon Photonics, High-Speed Silicon Photonics Transmitter, Ring Modulator, Electro-Optic Modulator, PAM-4
相關次數: 點閱:315下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著近年來數據傳輸需求的大幅增加,需要具更大頻寬的發射器來達到100-Gb/s以上位元率的高速數據傳輸。光通訊傳輸系統相比於傳統的電通訊傳輸系統,具有兩個主要優勢:首先,它能夠實現更低的能量損耗;第二,它具有更快的傳輸速率,可以實現更高效率的數據傳輸。
本論文研究目標為探討及設計模擬單通道傳輸速率100-Gb/s PAM-4訊號的矽光子環形調變器,首先按照環形調變器元件設計參數及元件特性關係建立設計流程,接著按照設計流程進行環形調變器的矽波導尺寸、佈植濃度和方式、耦合間距等模擬和分析,最後設計出三種類型的環形調變器,分別為平行雙環形調變器、可調式耦合器加平行雙環形調變器以及兩段式Z形佈植單環形調變器,其優點為可以直接對環形調變器給予兩路NRZ訊號並在光學調變的情況下產生PAM-4訊號,降低驅動電路端的訊號處理需求。
利用這三種環形調變器來達到單通道傳輸速率100-Gb/s PAM-4訊號發射器,所設計之發射器種類總共有三種,每種發射器都有各自的優缺點,並分析當輸入訊號不同的上升/下降時間對眼圖的參數的影響。所設計的矽光子環形調變器已下線至比利時歐洲跨校際微電子中心(IMEC)製作,未來經過量測,可驗證其作為單通道傳輸速率100-Gb/s PAM-4訊號發射器之可行性。


With the significant increase in data transmission demands in recent years, there are urgent needs for transmitters with larger bandwidth to support high-speed data transmission of 100-Gb/s and above data rates. Optical communication systems have become a more attractive choice, compared to traditional electrical communication systems because they have two main advantages: lower energy consumption and faster transmission rates.
The objective of this study is to investigate and design a silicon photonics ring modulator for achieving single-channel 100-Gb/s PAM-4 signal transmission. The design process is established based on the relationship between the design parameters and the characteristics of the ring modulator components fabricated with IMEC . The silicon waveguide dimension, implantation concentration and profile, and the coupling spacing of the ring modulator are simulated and analyzed. Three types of ring modulators, including parallel dual ring modulator, tunable directional coupler with parallel dual ring modulator and two segment single ring modulator, are designed and compared.
Using these three types of ring modulators, the single-channel 100-Gb/s PAM-4 signal transmitter can be realized. The advantages and disadvantages of the three types of transmitters are compared. The impact of different rise/fall time of the input signal on the eye diagram is analyzed. The designed 100-Gb/s ring modulators have been tape-out to IMEC (Interuniversity Microelectronics Centre) in Belgium for fabrication with silicon photonics platform. The feasibility for 100-Gb/s data transmission with these silicon photonics ring modulators will be verified after the fabrication is finished.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 導論 1 1.1 前言 1 1.2 研究動機 2 1.3 矽光調變器 3 1.4 論文架構 8 第二章 環形調變器之原理介紹與設計 10 2.1 前言 10 2.2 環形共振器的特性 10 2.2.1 環形共振器結構 10 2.2.2 全通環形共振器頻譜特性 11 2.2.3 模態耦合理論 15 2.3 相位位移器 18 2.4 矽光調變器 19 2.4.1 矽光調變器之物理效應 19 2.4.2 矽光調變器之偏壓操作 20 2.4.3 環形調變器 22 2.5 環形調變器之關鍵參數及設計流程 25 2.5.1 環形調變器之關鍵參數 25 2.5.2 環形調變器之設計流程 29 2.6 環形調變器之設計 32 2.6.1 光波導尺寸設計及分析 32 2.6.2 調變區域佈植方式及濃度設計和分析 33 2.6.3 環形調變器穿透頻譜特性 44 第三章 矽光子發射器設計及模擬 51 3.1 前言 51 3.2 訊號調變方式 51 3.2.1 歸零編碼訊號 51 3.2.2 不歸零編碼訊號 51 3.2.3 四階脈衝振幅調變訊號 52 3.3 矽光子發射器之設計及模擬 55 3.4 平行雙環四階脈衝調變矽光子發射器 57 3.4.1 平行雙環調變器穿透頻譜特性 58 3.4.2 PAM-4眼圖模擬 62 3.5 可調式耦合器加平行雙環四階脈衝調變矽光子發射器 70 3.5.1 可調式耦合器 70 3.5.2 可調式耦合器加平行雙環調變器穿透頻譜特性 71 3.5.3 PAM-4眼圖模擬 72 3.6 兩段式Z形佈植單環四階脈衝調變矽光子發射器 74 3.6.1 兩段式Z形佈植單環調變器穿透頻譜圖 75 3.6.2 PAM-4眼圖模擬 76 第四章 矽光子晶片佈局設計 79 4.1 前言 79 4.2 晶片佈局設計 79 4.2.1 主要架構 80 4.2.2 測試元件 85 第五章 結論與未來發展 89 5.1 成果與討論 89 5.2 未來研究方向與發展 91 參考文獻 92

[1] R. Soref, "The past, present, and future of silicon photonics," IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1678-1687, 2006.
[2] W. Bogaerts and L. Chrostowski, "Silicon photonics circuit design: methods, tools and challenges," Laser & Photonics Reviews, vol. 12, no. 4, p. 1700237, 2018.
[3] S. Y. Siew, B. Li, F. Gao, H. Y. Zheng, W. Zhang, P. Guo, S. W. Xie, A. Song, B. Dong, and L. W. Luo, "Review of silicon photonics technology and platform development," Journal of Lightwave Technology, vol. 39, no. 13, pp. 4374-4389, 2021.
[4] U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W.-D. Molzow, A. Sigmund, H.-G. Bach, and M. Moehrle, "1.3 μm electroabsorption modulated lasers for PAM4/PAM8 single channel 100 Gb/s," in 26th International Conference on Indium Phosphide and Related Materials (IPRM), 2014: IEEE, pp. 1-2.
[5] E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, "168-Gb/s single carrier PAM4 transmission for intra-data center optical interconnects," IEEE Photonics Technology Letters, vol. 29, no. 3, pp. 314-317, 2017.
[6] S. A. Srinivasan, M. Pantouvaki, S. Gupta, H. T. Chen, P. Verheyen, G. Lepage, G. Roelkens, K. Saraswat, D. Van Thourhout, and P. Absil, "56 Gb/s germanium waveguide electro-absorption modulator," Journal of Lightwave Technology, vol. 34, no. 2, pp. 419-424, 2016.
[7] M. Theurer, H. Zhang, Y. Wang, W. Chen, L. Chen, U. Troppenz, G. Przyrembel, A. Sigmund, M. Moehrle, and M. Schell, "2× 56 GB/s from a double side electroabsorption modulated DFB laser and application in novel optical PAM4 generation," Journal of Lightwave Technology, vol. 35, no. 4, pp. 706-710, 2016.
[8] J. Verbist, J. Lambrecht, M. Verplaetse, J. Van Kerrebrouck, A. Srinivasan, P. De Heyn, T. De Keulenaer, X. Yin, G. Torfs, and J. Van Campenhout, "DAC-less and DSP-free 112 Gb/s PAM-4 transmitter using two parallel electroabsorption modulators," Journal of Lightwave Technology, vol. 36, no. 5, pp. 1281-1286, 2018.
[9] M. Pantouvaki, S. Srinivasan, Y. Ban, P. De Heyn, P. Verheyen, G. Lepage, H. Chen, J. De Coster, N. Golshani, and S. Balakrishnan, "Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform," Journal of Lightwave Technology, vol. 35, no. 4, pp. 631-638, 2017.
[10] J. Zhou, J. Wang, L. Zhu, and Q. Zhang, "High baud rate all-silicon photonics carrier depletion modulators," Journal of Lightwave Technology, vol. 38, no. 2, pp. 272-281, 2019.
[11] G. Zhou, Y. Guo, L. Lu, J. Chen, and L. Zhou, "Ultra-wideband signal generation based on a silicon segmented Mach-Zehnder modulator," IEEE Photonics Journal, vol. 12, no. 6, pp. 1-15, 2020.
[12] D. M. Dourado, G. B. de Farias, R. H. Gounella, M. d. L. Rocha, and J. Carmo, "Challenges in silicon photonics modulators for data center interconnect applications," Optics & Laser Technology, vol. 144, p. 107376, 2021.
[13] J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, "A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning," Journal of Lightwave Technology, vol. 37, no. 1, pp. 110-115, 2018.
[14] R. Soref and B. Bennett, "Electrooptical effects in silicon," IEEE journal of Quantum Electronics, vol. 23, no. 1, pp. 123-129, 1987.
[15] Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, "High-speed silicon modulator based on cascaded microring resonators," Optics Express, vol. 20, no. 14, pp. 15079-15085, 2012.
[16] Y. Yuan, W. V. Sorin, Z. Huang, X. Zeng, D. Liang, A. Kumar, S. Palermo, M. Fiorentino, and R. G. Beausoleil, "A 100 Gb/s PAM4 two-segment silicon microring resonator modulator using a standard foundry process," ACS Photonics, vol. 9, no. 4, pp. 1165-1171, 2022.
[17] L. Zhou and A. W. Poon, "Silicon electro-optic modulators using pin diodes embedded 10-micron-diameter microdisk resonators," Optics Express, vol. 14, no. 15, pp. 6851-6857, 2006.
[18] J.-B. You, M. Park, J.-W. Park, and G. Kim, "12.5 Gbps optical modulation of silicon racetrack resonator based on carrier-depletion in asymmetric pn diode," Optics Express, vol. 16, no. 22, pp. 18340-18344, 2008.
[19] S. Manipatruni, K. Preston, L. Chen, and M. Lipson, "Ultra-low voltage, ultra-small mode volume silicon microring modulator," Optics Express, vol. 18, no. 17, pp. 18235-18242, 2010.
[20] P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, "Wavelength-tunable silicon microring modulator," Optics Express, vol. 18, no. 11, pp. 10941-10946, 2010.
[21] M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, "Vertical junction silicon microdisk modulators and switches," Optics Express, vol. 19, no. 22, pp. 21989-22003, 2011.
[22] X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, "25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions," Optics Express, vol. 20, no. 3, pp. 2507-2515, 2012.
[23] G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, "40 Gb/s thermally tunable CMOS ring modulator," in The 9th International Conference on Group IV Photonics (GFP), 2012: IEEE, pp. 1-3.
[24] T. Gu, Y.-K. Chen, C. W. Wong, and P. Dong, "Cascaded uncoupled dual-ring modulator," Optics Letters, vol. 39, no. 16, pp. 4974-4977, 2014.
[25] O. Dubray, A. Abraham, K. Hassan, S. Olivier, D. Marris-Morini, L. Vivien, I. O'Connor, and S. Menezo, "Electro-optical ring modulator: An ultracompact model for the comparison and optimization of pn, pin, and capacitive junction," IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 6, pp. 89-98, 2016.
[26] Z. Yong, W. D. Sacher, Y. Huang, J. C. Mikkelsen, Y. Yang, X. Luo, P. Dumais, D. Goodwill, H. Bahrami, and P. G.-Q. Lo, "U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band," Optics Express, vol. 25, no. 7, pp. 8425-8439, 2017.
[27] R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, "Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission," IEEE Photonics Technology Letters, vol. 29, no. 12, pp. 1046-1049, 2017.
[28] A. Jain, N. Hosseinzadeh, X. Wu, H. K. Tsang, R. Helkey, J. E. Bowers, and J. F. Buckwalter, "A high spur-free dynamic range silicon DC kerr ring modulator for RF applications," Journal of Lightwave Technology, vol. 37, no. 13, pp. 3261-3272, 2019.
[29] Y. Ban, J. Verbist, M. Vanhoecke, J. Bauwelinck, P. Verheyen, S. Lardenois, M. Pantouvaki, and J. Van Campenhout, "Low-voltage 60Gb/s NRZ and 100Gb/s PAM4 O-band silicon ring modulator," in 2019 IEEE Optical Interconnects Conference (OI), 2019: IEEE, pp. 1-2.
[30] Y. Tong, Z. Hu, X. Wu, S. Liu, L. Chang, A. Netherton, C.-K. Chan, J. E. Bowers, and H. K. Tsang, "An experimental demonstration of 160-Gbit/s PAM-4 using a silicon micro-ring modulator," IEEE Photonics Technology Letters, vol. 32, no. 2, pp. 125-128, 2019.
[31] H. Cai, S. Fu, Y. Yu, and X. Zhang, "Lateral-Zigzag PN Junction Enabled High-Efficiency Silicon Micro-Ring Modulator Working at 100Gb/s," IEEE Photonics Technology Letters, vol. 34, no. 10, pp. 525-528, 2022.
[32] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, "Silicon microring resonators," Laser & Photonics Reviews, vol. 6, no. 1, pp. 47-73, 2012.
[33] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," Journal of Lightwave Technology, vol. 15, no. 6, pp. 998-1005, 1997.
[34] C. Manolatou, M. Khan, S. Fan, P. R. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE Journal of Quantum Electronics, vol. 35, no. 9, pp. 1322-1331, 1999.
[35] C.-W. Tsai, "SOI micro-ring resonator measurements and analysis," Master Thesis, Department of Photonics, National Sun Yat-sen University, 2013.
[36] Y. Ban, "Silicon Micro-Ring Modulator Modeling," Master Thesis, Graduate School of Yonsei University, 2015.
[37] J. M. Gamba, "The role of transport phenomena in whispering gallery mode optical biosensor performance," PhD Dissertation, California Institute of Technology, 2012.
[38] S. L. Chuang, Physics of photonic devices. John Wiley & Sons, 2012.
[39] L. Yang, H. Chen, and J. Ding, "12.5 Gb/s carrier-injection silicon Mach-Zehnder optical modulator with high optical bandwidth," in The 9th International Conference on Group IV Photonics (GFP), 2012: IEEE, pp. 129-131.
[40] O. Jafari, W. Shi, and S. LaRochelle, "Mach-Zehnder silicon photonic modulator assisted by phase-shifted Bragg gratings," IEEE Photonics Technology Letters, vol. 32, no. 8, pp. 445-448, 2020.
[41] S.-Y. Lin, "Asynchronous PAM-4 Signal Quality Monitoring Method of High-Speed Wired Communication System," Master, Communication Engineering College of Electrical Engineering and Computer Science, National Taiwan University, 2017.
[42] J. Verbist, J. Lambrecht, M. Verplaetse, S. A. Srinivasan, P. De Heyn, T. De Keulenaer, R. Pierco, A. Vyncke, J. Van Campenhout, and X. Yin, "Real-time and DSP-free 128 Gb/s PAM-4 link using a binary driven silicon photonic transmitter," Journal of Lightwave Technology, vol. 37, no. 2, pp. 274-280, 2019.

無法下載圖示 全文公開日期 2025/08/21 (校內網路)
全文公開日期 2025/08/21 (校外網路)
全文公開日期 2025/08/21 (國家圖書館:臺灣博碩士論文系統)
QR CODE