簡易檢索 / 詳目顯示

研究生: 何培安
Pei-An Ho
論文名稱: 電光調變器空間同調度分析
The Spatial Coherence Property of an Electro-Optic Modulator
指導教授: 譚昌文
Chen-Wen Tarn
口試委員: 陳鴻興
none
黃柏仁
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 52
中文關鍵詞: 電光調變器同調度
外文關鍵詞: E-O Modulator, Degree of Coherence
相關次數: 點閱:156下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本論文中,提出一個理論模型評估於電光調變器(EO Modulator)施加不同電壓下,外調式光通訊之光源同調程度(Degree of Coherence)的改變。於研究中使用三維波動方程式(Maxwell’s Equation)可推導出一組耦合方程式,藉由耦合方程式解出電光調變器輸出光之解析解並觀察於電壓區間0~10 V下之模擬結果。
    當輸入光源以高斯-謝爾形式(Gaussian-Schell model form)輸入電光調變器時,因電光調變器內部晶體受外加電場影響,使晶體內部之折射率(Refractive Index)改變,進而使之形成如同光柵(Grating)之結構。當光源經過該晶體時,以自相關函數(Autocorellation)計算輸出光之同調程度
    ,透過對LiNbO3晶體施加直流電0 V至10 V進行比較,輸出光於此電壓區間中,觀察O光(Ordinary Light)其同調程度無明顯之變化,觀察E光(Extraordinary Light)其同調程度隨著電壓上升而逐漸下降。


    In this thesis, a theoretical model is proposed to evaluate the property of the spatial coherence of an electro-optic modulator. Staring from the Maxwell’s equation, the evolution and interaction of a lightwave inside the eltro-optic modulator can be properly described. In order to investigate the degree of spatial coherence of light during the electro-optic interaction, a set of coupled equations of the ordinary and extraordinary light can be derived from the Maxwell’s equations. The couple equations can be solved analytically and the evolution of the spatial coherence of light can be observed to get a general solution and simulation in applied voltage in 0~10 V.
    The lightwave is assumed in the Gaussian-Schell model form and incidents on the E-O modulator and the crystal of the E-O modulator is modulated by an external electric field, therefore the refractive index is formed as a grating type. When the lightwave through the crystal, the degree of coherence can be calculated by the autocorrelation function.
    We find that, under the applied voltage 0~10 V on LiNbO3 crystal, there is no significant change of the degree of coherence of the ordinary light, while a significant change of and the extraordinary light can be observed.

    第一章 緒論 1.1前言………………………………………………… 8 1.2內文介紹………………………………………….... 10 第二章 一般理論 2.1 Maxwell’s 方程式與光的電磁理論……...…… 12 2.1.1Maxwell’s 方程式………………………... 12 2.1.2波動方程式………………………………. 14 2.1.3光於非均向性晶體中之特性……………. 15 2.2 相關性函數…………………………………….. 17 2.2.1摺積分……………………………………. 17 2.2.2互相關函數………………………………. 18 2.2.3自相關函數………………………………. 19 第三章 電光效應原理 26 3.1 電光效應……………………………………....... 26 3.2 電光效應的折射率橢圓………………………... 28 3.3 LiNbO3的線性電光效應………......................... 29 3.4 耦合方程式……………………………………... 31 第四章 數值模擬 4.1 Mutual Intensity Function與耦合方程式………...... 39 4.2 解析解與初始條件……........................................... 44 4.3 數值分析與模擬………………………………….. 46 第五章 結論與未來研究方向 49 參考文獻 51

    [1] J. Xu, M. Kong, and A. Lin,“OFDM-based broadband underwater wireless optical communication system using a compact blue LED”, Optics Communications, vol. 369, pp. 100-105, 2016.
    [2] J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication”, Optics Communications, vol. 359, pp. 254-260, 2016.
    [3] A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “ Novel user allocation scheme for full duplex multiuser bidirectional Li-Fi network”, Optics Communications, vol. 339, pp. 153-156, 2015.
    [4] Optical Time-Division Multiplexed Communication Networks Part 5. Retrived 4, 2016, from http://what-when-how.com/fiber-optics/optical-time-division-multiplexed-communication-networks-part-5/
    [5] K. Iizuka (2002). Elements of Photonic, Volune I: In Space and Special Media. John Wiley & Sons.
    [6] T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-Speed Control of Lightwave Amplitude, Phase, and Frequency by Use of Electrooptic Effect”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 79-91, No. 1. 2007.
    [7] S. Zhang, X. Zhang, S. Liu, and Y. Liu, “Measurement of modulation index and half-wave voltage of an electro-optical phase modulator with a dispersion-based phase filter”, Optics Communications, vol. 285, pp. 5089-5093, 2012.
    [8] 高堅志,「光訊號在外調式光通訊系統受偏極化模態色散影響之品質評估」,博士論文,中華民國95年。
    [9] J. A. Kong, Electromagnetic Wave Theory. New York: Wiley, 1990.
    [10] A. Yariv and P.Yeh, Optical Waves in Crystals. New York: Wiley, 1984.
    [11] A. Yariv, Optical Electronic in Modern Communication. New York: Oxford University Press, 1997.
    [12] J. Stewart, Essential Calculus. Brooks/Cole, 2012.
    [13] A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems (2nd Edition). New York: Wiley, 1996.
    [14] S. Haykin and B. V. Veen, Signals and Systems (2nd Edition). John Wiley & Sons (Asia), 2004.
    [15] E. Hecht, Optics (4th Edition). Addison Wesley, 2002.
    [16] Michelson Interferometer Operation. Block Engineering. Retrieved 30 May 2016.
    [17] Rothman, (2003). Everything's Relative and Other Fables in Science and Technology. John Wiley & Sons.
    [18] H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits. New York. McGraw-Hill, 1989.
    [19] S. O. Kasap, Optoelectronics and Photonics, Principles and Practices. Prentice Hall, 2001.
    [20] M. M. K. Liu, Principles and Applications of Optical Communications, Boston, Irwin, 1996.
    [21] B. E. A. Saleh and M. C. Tiech, Fundamentals of Photonics, New York, John Wiley, 1991.
    [22] M. Gottlieb, C. L. M. Ireland, J. M. Ley, Electro-Optic and Acousto-Optic Scanning and Deflection, New York, M. Dekker, 1983.
    [23] J. W. Goodman, Statistical Optics, New York, Wiley, 1985.
    [24] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, New York, Cambridge U. Press, 1995.

    QR CODE