簡易檢索 / 詳目顯示

研究生: 姚哲煒
Che-Wei Yao
論文名稱: 採用雙閘極絕緣層結構提升有機薄膜電晶體特性之研究
Performance Enhancement of Pentacene-Based Organic Thin-Film Transistors using Bilayer Gate Insulator
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 范慶麟
Ching-Lin Fan
李志堅
Chih-Chien Lee
涂俊豪
Jun-Hao Tu
陳威州
Wei-Chou Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 96
中文關鍵詞: 有機薄膜電晶體雙閘極絕緣層高介電質有機材料聚乙烯醇並五苯
外文關鍵詞: OTFT, Bilayer Gate Insulator, PVP, PVA, pentacene, high K
相關次數: 點閱:271下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文將以Pentacene為主動層的材料背景下利用雙閘極絕緣層結構(PVA加PVP),可獲得最佳的載子移動率 1.21 cm^2/V-s,並且利用電容串聯公式證明電容值整體放大倍率、AFM量測PVP材料更適合生長在高分子材料上、FTIR光譜儀分析氫氧跟離子量與Contact Angle、α-step等儀器來得知電特性、薄膜品質與膜厚。
首先PVA將不使用有毒性的交聯劑,單純調整PVA與DI.Water濃度比例,以PVA: DI.Water = 1:8時,可有效降低Vth與-OH的,隨後配合旋轉塗佈初轉速500 rpm,時間20秒,末轉速3500 rpm,持續時間為40秒,然後放進烤箱,以110°C烘烤90分鐘去除多餘水分得到最佳成膜品質。接這PVP部分,配製溶液的比例濃度、旋轉塗佈轉速以及加熱交聯溫度,來取得最佳值,比例濃度為PGMEA:PVP:PMCF = 100:10:5.0 (wt%),旋轉塗佈初轉速500 rpm,時間20秒,末轉速5500 rpm,持續時間為40秒,放入烤箱以180。C加熱交聯90分鐘所製作出的有機薄膜電晶體的電特性為最佳。
將最佳PVP的參數製作在PVA薄膜上,可成功展現出PVA的high K特性且便可改善PVA親水性問題,如此一來增加電容值與pentacene獲得更好的生長品質 ,而大幅提升電特性。


This study has successfully improved the performance of pentacene-based organic thin-film transistor (OTFT) through adopting Polyvinyl Alcohol(PVA)/ poly-4-vinylphenol(PVP) bilayer gate insulator. The improved filed effect mobility and threshold votage are measured to be 1.21 cm2/V∙sec and - 8.6 V, respectively. The dramatic electrical enhancement is attributed to the soft surface of PVP and PVA combination, which leads to increment of pentacene grain size.

論文摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 概論 1 1.1研究背景 1 1.2研究動機 2 第二章 有機薄膜電晶體介紹 3 2.1有機半導體介紹 3 2.1.1有機半導體材料介紹 4 2.1.2有機半導體Pentacene之特性介紹 7 2.2有機半導體之傳輸機制 8 2.2.1載子跳躍模型機制(Hopping Model)[46-48] 9 2.2.2陷阱補捉與熱釋放模型機制 (Multiple Trapping and Release) [49][50] 11 2.2.3偏極子模型機制 (The Polaron Model) [51] 11 2.3有機絕緣層介紹 13 2.3.1閘及絕緣層材料 13 2.3.2高界電常數的介紹 14 2.4有機薄膜電晶體結構 15 2.5有機薄膜電晶體之操作模式 17 2.6電性參數萃取方式 20 2.6.1載子移動率(Mobility, μ) 21 2.6.2臨界電壓(Threshold Voltage, Vth) 23 2.6.3次臨界斜率(Subthreshold Swing, S.S.) 24 2.6.4開關電流比(On/Off Current Ratio, Ion/Ioff) 25 第三章 有機薄膜電晶體製作方法與流程 26 3.1基板(Substrate)&閘極(Gate) 26 3.2 PVP當閘極絕緣層之元件流程調配方法 27 3.3 PVA+PVP當閘極絕緣層之元件流程調配方法 30 3.4主動層 32 3.5源極/汲極 36 3.6製程機台及分析設備介紹 37 3.6.1製程機台 37 3.6.2半導體參數分析儀(SEMICONDUCTOR PARAMETER ANALYZER) 40 3.6.3原子力顯微鏡(ATOMIC FORCE MICROSCOPE,AFM) 41 3.6.4接觸角量測儀(CONTACT ANGLE) 42 3.6.5傅立葉轉換紅外線光譜儀傅立葉轉換紅外線光譜儀(FOURIER TRANSFORM INFRARED SPECTROMETER,FTIR) 43 3.6.6掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 44 3.6.7電感電容阻抗量測儀(LCR METER) 44 3.6.8表面輪廓測厚儀 (α-step) 45 第四章 閘極絕緣層參數決定與實驗結果 46 4.1 PVP當閘極絕緣層實驗結果 46 4.1.1不同比例濃度PMCF交聯劑下之PVP閘極絕緣層的影響 46 4.1.2不同烤箱溫度加熱交聯下PVP閘極絕緣層的影響 49 4.2 PVA當閘極絕緣層實驗結果 51 4.3 bilayer structure(PVA+PVP)當閘及絕緣層實驗結果 53 4.3.1不同比例濃度製作PVA閘及絕緣層之元件電特性 53 4.3.2電容-電壓特性(C-V)與K值分析 57 4.3.3不同旋轉塗佈轉速下PVA閘極絕緣層的影響 63 4.3.4不同旋轉塗佈轉速下PVP閘極絕緣層的影響 68 4.4雙層閘極絕緣層最佳化條件分析與比較 69 第五章 結論與未來展望 72 5.1結論 72 5.2未來展望 73 參考文獻 74

[1]Fan, C. L., Chiu, P. C. and Lin, C. C. “Low-Temperature-Deposited SiO2 Gate Insulator With Hydrophobic Methyl Groups for Bottom-Contact Organic Thin-Film Transistors,” IEEE Electron Device Lett., 2010, 31, 1485–1487.

[2]Fan, C. L., Y. Z. Lin, Lee, W. D., Wang, S. J., and Huang, C. H., “Improved pentacene growth continuity for enhancing the performance of pentacene-based organic thin-film transistors,” Org. Electron., 2012, 13, 2924–2928.

[3]Wei, C. Y., Adriyanto, Lin, F., Y. J., Li, Y. C., Huang, T. J., Chou, D. W., and Wang, Y. H., “Pentacene-based thin-film transistors with a solution-process hafnium oxide insulator,” IEEE Electron Device Lett., 2009, 30, 1039–1041.

[4]B. Kang, M. Jang, Y. Chung, H. Kim, S.K. Kwak, J.H. Oh, K. Cho, “Enhancing 2D growth of organic semiconductor thin films with macroporous structures via a small-molecule heterointerface” Nat. Commun. 5 (2014) 4752.

[5] K.-S. Jang, H.J. Suk, W.S. Kim, T. Ahn, J.-W. Ka, J. Kim, M.H. Yi, Org. ”Surface modification of polyimide gate
insulators for solution-processed 2,7-didecyl [1]benzothieno[3,2-b][1]benzothiophene (C10-BTBT) thin-film transistors” Electron. 13, 2012, 1665.

[6]Fan, C. L., Y. Z. Lin, Lee, W. D., Wang, S. J., and Huang, C. H., “Improved pentacene growth continuity for enhancing the performance of pentacene-based organic thin-film transistors,” Org. Electron., 2012, 13, 2924–2928.

[7]T. Umeda, D. Kumaki, and S. Tokito, “High air stability of threshold voltage on gate bias stress in pentacene TFTs with a hydroxyl-free and amorphous fluoropolymer as gate insulators,” Organic Electronics. 9, 545, 2008.
[8]G. D. Wilk, R. M. Wallace and J. M. Anthony, "High-K gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, vol. 89, no. 10, pp. 5243-5275, 2001.

[9]Chuan Yu Han1, Wing Man Tang, Cheung Hoi Leung, Chi Ming Che, and Pui, “To LaiHigh-mobility pentacene OTFT with TaLaO gate dielectric passivated by fluorine plasma,” P hys. Status Solidi RRL 8, No. 10, 866–870 , 2014Tzung-Da Tsai, Jer-Wei Chang, Ten-Chin Wen and Tzung-Fang Guo, “Manipulating the Hysteresis in Poly(vinyl alcohol)-Dielectric Organic Field-Effect Transistors Toward Memory Elements,” Adv. Funct. Mater. 2013, 23, 4206–4214.

[10]D. K. Hwang, Kimoon Lee, Jae Hoon Kim, Seongil ImChang Su Kim Hong Koo BaikJi Hoon Park and Eugene Kim, “Low-voltage high-mobility pentacene thin-film transistors with polymer/high- oxide double gate dielectrics,” Appl. Phys. Lett. 88, 2006, 243513.

[11]Jer-Wei Chang, Wei-Lieh Hsu, Chang-Yo Wua, Tzung-Fang Guo, Ten-Chin Wen, “The polymer gate dielectrics and source-drain electrodes on n-type pentacene-based organic field-effect transistors,” Organic Electronics, Vol. 11, 2010, 1613–1619.

[12]Changhe Liu, Qingping Zhu, Weipeng Jin and Wen Gu, Jun Wang “The ultraviolet-ozone effects on organic thin-film transistors with double polymeric dielectric layers,” Synthetic Metals, Vol. 161, 2011, 1635– 1639.

[13]Tomohito Sekine, Kenjiro Fukuda, Daisuke Kumaki, and Shizuo Tokito “Highly stable flexible printed organic thin-film transistor devices under high strain conditions using semiconducting polymers,” Japanese Journal of Applied Physics 54, 2015, 04DK10.

[14]SAUMEN MANDAL and MONICA KATIYAR, “Processing and performance of organic insulators as a gate layer in organic thin film transistors fabricated on polyethylene terephthalate substrate, “Bull. Mater. Sci, Vol. 36, No. 4, 2013, 653-660.

[15]Chun Chieh Wang, Wen-His Lee and Chao-Te Liu,” Double-gate organic thin-film transistor using a photosensitive polymer as the dielectric layer, ” Thin Solid Films, 518, 2010, 7385–7389.

[16]Ning Wang, Lipeng Zhao, Chuhong Zhang and Li Li,” Water states and thermal processability of boric acid modified poly(vinyl alcohol)” APPL. POLYM. SCI. 2016, 43246.

QR CODE