簡易檢索 / 詳目顯示

研究生: 鄧敬諺
Jing-Yan Deng
論文名稱: 水溶性多精胺酸聚天門冬胺酸-吡咯接枝物包覆甲硝唑之藥物釋放
Drug release of metronidazole packaged by soluble(multi-L-arginyl-poly-L-aspartate)-pyrrole
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 曾文祺
Wen-Chi Tseng
林析右
Shi-Yow Lin
唐建翔
Chien-Hsiang Tang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 101
中文關鍵詞: 多精胺酸聚天門冬胺酸吡咯甲硝唑
外文關鍵詞: multi-L-arginyl-poly-L-aspartate, pyrrole, metronidazole
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

基因重組過的大腸桿菌生產的多精胺酸聚天門冬胺酸(multi-L-arginyl-poly-L-aspartate, MAPA),由天門冬胺酸(aspartic acid, Asp)和精胺酸(arginine, Arg)和離胺酸(lysine, Lys)所組成,是一種具有生物相容性和潛在藥物傳遞的蛋白質高分子。
本研究藉由Clauson-Kaas Reaction的方式將吡咯(pyrrole)接上水溶性的MAPA,將此分子命名為水溶性多精胺酸聚天門冬胺酸吡咯(sMAPA-g-pyrrole),隨後再利用傅立葉變換紅外光譜(Fourier-transform infrared spectroscopy, FTIR)以及核磁共振光譜法(Nuclear Magnetic Resonance spectroscopy, NMR)鑑定其結構。
之後,再測試其酸鹼應答的特性,其具有成為陰道藥物釋放系統的可能,故將此高分子進行包覆甲硝唑(metronidazole)的試驗,並且在陰道模擬液下釋放。再利用動態光散射粒徑分析(Dynamic Light Scattering, DLS)和穿透式電子顯微鏡(Transmission electron microscope, TEM)確定粒徑大小與形狀。最後,再以MTT assay來測試此藥物釋放系統對於L929細胞以及E.coli的毒性。


Multi-L-arginyl-poly-L-aspartate (MAPA) produced by recombinant Escherichia coli is composed of aspartic acid (Asp) and arginine (Arg) and lysine (Lys). It is a protein polymer with biocompatibility and potential of drug delivery system.
In this study, pyrrole is attached to water-soluble MAPA by Clauson-Kaas Reaction, then the polymer is named as water-soluble MAPA-pyrrole(sMAPA-g-pyrrole). Use Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR) to identify the structure.
Afterwards, test the pH sensitive, and discover that the polymer has a potential of vaginal drug delivery system. Therefore, use this polymer to package metronidazole(mtz) and test the release from simulated vaginal fluid. Then, use dynamic light scattering particle size analysis (DLS) and transmission electron microscope (TEM) to check the size and shape. At last, use MTT assay to test the toxicity of the drug delivery system to L929 cells and E.coli.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 第二章 文獻回顧 2 2.1 多精胺酸聚天門冬胺酸 2 2.1.1以基因重組方式生產多精胺酸聚天門冬胺酸 3 2.1.2多精胺酸聚天門冬胺酸之應用 4 2.2 吡咯(Pyrrole) 5 2.2.1吡咯(Pyrrole)的簡介 5 2.2.2吡咯(Pyrrole)的應用 5 2.3 甲硝唑(metronidazole) 6 2.3.1甲硝唑的簡介 6 2.3.2甲硝唑的應用 7 2.4 智能高分子(Smart Polymer) 9 2.4.1酸鹼應答性高分子 9 2.5 藥物釋放(Drug delivery) 10 2.5.1利用吡咯的藥物釋放 11 2.5.2酸鹼應答的藥物釋放 11 2.5.3陰道的藥物釋放 12 第三章 實驗材料與方法 13 3.1 實驗藥品 13 3.2 實驗儀器 14 3.3 藥品與溶液配置 15 3.3.1 菌株培養 15 3.3.2 SDS-PAGE 18 3.3.3 陰道模擬液(Simulated Vaginal Fluid) 19 3.3.4 核磁共振光譜法(Nuclear Magnetic Resonance Spectroscopy, NMR) 20 3.3.5 TNBSA(2,4,6-Trinitrobenzene Sulfonic Acid) 20 3.3.6 藥物包覆 20 3.3.7 細胞培養 21 3.4 實驗步驟 23 3.4.1菌株培養 23 3.4.2純化多精胺酸聚天門冬胺酸 23 3.4.3 SDS-PAGE 24 3.4.4水溶性多精胺酸聚天門冬胺酸吡咯加成反應 25 3.4.5水溶性多精胺酸聚天門冬胺酸吡咯的接枝率測定 27 3.4.6水溶性多精胺酸聚天門冬胺酸吡咯的酸鹼應答 29 3.4.7水溶性多精胺酸聚天門冬胺酸吡咯與甲硝唑的UV-Vis圖譜分析 30 3.4.8藥物包覆與釋放 32 3.4.9細胞毒性測試 34 3.4.10微生物毒性測試 37 第四章 結果與討論 38 4.1水溶性多精胺酸聚天門冬胺酸吡咯 38 4.1.1水溶性多精胺酸聚天門冬胺酸吡咯之FTIR分析 38 4.1.2水溶性多精胺酸聚天門冬胺酸吡咯之NMR分析 40 4.1.3水溶性多精胺酸聚天門冬胺酸吡咯的接枝比例計算 41 4.2水溶性多精胺酸聚天門冬胺酸吡咯的酸鹼應答 44 4.2.1水溶性多精胺酸聚天門冬胺酸吡咯在超純水中的酸鹼應答 44 4.2.2水溶性多精胺酸聚天門冬胺酸吡咯在陰道模擬液中的酸鹼應答 49 4.3藥物包覆與釋放 54 4.3.1水溶性多精胺酸聚天門冬胺酸吡咯包覆甲硝唑 54 4.3.2水溶性多精胺酸聚天門冬胺酸吡咯包覆甲硝唑的動態光散射粒徑分析 59 4.3.3水溶性多精胺酸聚天門冬胺酸吡咯包覆甲硝唑的穿透式電子顯微鏡粒徑分析 60 4.4水溶性多精胺酸聚天門冬胺酸吡咯包覆甲硝唑的藥物釋放 63 4.4.1陰道模擬液中的藥物釋放 63 4.4.2陰道模擬液中的穩定性測試 64 4.5細胞毒性測試 66 4.5.1體外細胞毒性測試 66 4.6微生物毒性測試 69 4.6.1大腸桿菌毒性測試 69 結論與未來展望 70 附錄 71 附錄一 SDS-PAGE分析水溶性/非水溶性多精胺酸聚天門冬胺酸分子量 71 附錄二 HPLC的水溶性多精胺酸聚天門冬胺酸分析 72 附錄三 DLS對於各包覆情況的分析 73 參考文獻 85

1. Frommeyer, M., Wiefel, L., & Steinbüchel, A. Features of the biotechnologically relevant polyamide family “cyanophycins” and their biosynthesis in prokaryotes and eukaryotes. Critical Reviews in Biotechnology, 36(1), 153–164.
2. Simon, R. D. Cyanophycin Granules from the Blue-Green Alga Anabaena cylindrica: A Reserve Material Consisting of Copolymers of Aspartic Acid and Arginine. Proceedings of the National Academy of Sciences, 68(2), 265–267.
3. Simon, R. D., & Weathers, P. Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in cyanobacteria. Biochimica et Biophysica Acta (BBA) - Protein Structure, 420(1), 165–176.
4. Mary M. Allen, Pamela J. Weathers, Structure and Composition of Cyanophycin Granules in the Cyanobacterium Aphanocapsa 6308. Journal OF Bacteriology, Feb. 1980, p. 959-962
5. Hai, T., Oppermann-Sanio, F. B., & Steinbüchel, A. Purification and characterization of cyanophycin and cyanophycin synthetase from the thermophilicSynechococcussp. MA19. FEMS Microbiology Letters, 181(2), 229–236.
6. Wingard, L. L., Miller, S. R., Sellker, J. M. L., Stenn, E., Allen, M. M., & Wood, A. M. Cyanophycin Production in a Phycoerythrin-Containing Marine Synechococcus Strain of Unusual Phylogenetic Affinity. Applied and Environmental Microbiology, 68(4), 1772–1777.
7. Aboulmagd, E., Voss, I., Oppermann-Sanio, F. B., & Steinbüchel, A. Heterologous Expression of Cyanophycin Synthetase and Cyanophycin Synthesis in the Industrial Relevant BacteriaCorynebacterium glutamicumandRalstoniaeutrophaand inPseudomonas putida. Biomacromolecules, 2(4), 1338–1342.
8. Meussen, B. J., Weusthuis, R. A., Sanders, J. P. M., & de Graaff, L. H. Production of cyanophycin in Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene. Applied Microbiology and Biotechnology, 93(3), 1167–1174.
9. Du, J., Li, L., & Zhou, S. Enhanced cyanophycin production by Escherichia coli overexpressing the heterologous cphA gene from a deep sea metagenomic library. Journal of Bioscience and Bioengineering, 123(2), 239–244.
10. Steinle, A., Witthoff, S., Krause, J. P., & Steinbuchel, A. Establishment of Cyanophycin Biosynthesis in Pichia pastoris and Optimization by Use of Engineered Cyanophycin Synthetases. Applied and Environmental Microbiology, 76(4), 1062–1070.
11. Tseng, W.-C., Fang, T.-Y., Hsieh, Y.-C., Chen, C.-Y., & Li, M.-C. Solubility and thermal response of fractionated cyanophycin prepared with recombinant Escherichia coli. Journal of Biotechnology, 249, 59–65.
12. Berg, H., Ziegler, K., Piotukh, K., Baier, K., Lockau, W., & Volkmer-Engert, R. Biosynthesis of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartic acid (cyanophycin). European Journal of Biochemistry, 267(17), 5561–5570.
13. Frommeyer, M., & Steinbuchel, A. Increased Lysine Content Is the Main Characteristic of the Soluble Form of the Polyamide Cyanophycin Synthesized by Recombinant Escherichia coli. Applied and Environmental Microbiology, 79(14), 4474–4483.
14. Low, K. C., Wheeler, A. P., & Koskan, L. P. Commercial Poly(aspartic acid) and Its Uses. Hydrophilic Polymers, 99–111.
15. Solaiman, D. K. Y., Garcia, R. A., Ashby, R. D., Piazza, G. J., & Steinbüchel, A. Rendered-protein hydrolysates for microbial synthesis of cyanophycin biopolymer. New Biotechnology, 28(6), 552–558.
16. Sallam, A., & Steinbüchel, A. Dipeptides in nutrition and therapy: cyanophycin-derived dipeptides as natural alternatives and their biotechnological production. Applied Microbiology and Biotechnology, 87(3), 815–828.
17. Tseng, W.-C., Fang, T.-Y., Chen, C.-Y., Hsieh, Y.-C., & Lai, W.-L. Upper Critical Solution Temperature-Type Thermal Response of Soluble Multi-l -Arginyl-Poly-l -Aspartic Acid (cyanophycin) Conjugated with Maltodextrin. Journal of Polymer Science Part A: Polymer Chemistry.
18. Gholap, S. S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. European Journal of Medicinal Chemistry, 110, 13–31.
19. Brian L. Bray, Peter H. Matines, Reto Naef, Dennis R. Solas, Thomas T. Tidwell, Dean R. Artis, and Joseph M. Muchowski. N-(Triisopropylsilyl)pyrrole. A Progenitor “Par Excellence” of 3-Substituted Pyrroles. J. Org. Chem. 1990, 55, 6317-6328
20. Wurz, R. P., & Charette, A. B. Doubly Activated Cyclopropanes as Synthetic Precursors for the Preparation of 4-Nitro- and 4-Cyano-dihydropyrroles and Pyrroles. ChemInform, 36(43).
21. Lee, H., Lee, J., Lee, S., Shin, Y., Jung, W., Kim, J.-H., … Koh, J. S. A novel class of highly potent, selective, and non-peptidic inhibitor of ras farnesyltransferase (FTase). Bioorganic & Medicinal Chemistry Letters, 11(23), 3069–3072.
22. Wendell W. Wilkerson, Robert A. Copeland, M. Covington, and James M. Trzaskos. Antiinflammatory 4,5-Diarylpyrroles. 2. Activity as a Function of Cyclooxygenase-2 Inhibition. J. Med. Chem. 1995, 38, 3895-3901
23. Fernandes, E., Costa, D., Toste, S. A., Lima, J. L. F. C., & Reis, S. In vitro scavenging activity for reactive oxygen and nitrogen species by nonsteroidal anti-inflammatory indole, pyrrole, and oxazole derivative drugs. Free Radical Biology and Medicine, 37(11), 1895–1905.
24. D. Curran, J. Grimshaw, and Sarath D. Perera. Poly(pyrro1e) as a Support for Electrocatalytic Materials. Chem. SOC. Rev., 1991, 20, 391-404
25. Gelling, V. J., Wiest, M. M., Tallman, D. E., Bierwagen, G. P., & Wallace, G. G. Electroactive-conducting polymers for corrosion control. Progress in Organic Coatings, 43(1-3), 149–157.
26. Leitsch, D. A review on metronidazole: an old warhorse in antimicrobial chemotherapy. Parasitology, 1–12.
27. Jokipii, L., & Jokipii, A. M. M. In Vitro Susceptibility of Giardia lamblia Trophozoites to Metronidazole and Tinidazole. Journal of Infectious Diseases, 141(3), 317–325.
28. Powell, S. J., Macleod, I., Wilmot, A. J., Elsdon-dew, R. Metronidazole in Amoebic Dysentery and Amoebic Liver Abscess. Lancet 1966 pp.1329-31
29. K. Dornbusch, Carl E. Nord and Barbro O.. Antibiotic Susceptibility of Anaerobic Bacteria with Special Reference to Bacteroides fragilis. Scandinavian Journal of Infectious Diseases, 11(sup19), 17–25.
30. Pankuch, G. A., Jacobs, M. R., & Appelbaum, P. C. Susceptibilities of 428 gram-positive and -negative anaerobic bacteria to Bay y3118 compared with their susceptibilities to ciprofloxacin, clindamycin, metronidazole, piperacillin, piperacillin-tazobactam, and cefoxitin. Antimicrobial Agents and Chemotherapy, 37(8), 1649–1654.
31. Kharsany, A. B., Hoosen, A. A., & Van den Ende, J. Antimicrobial susceptibilities of Gardnerella vaginalis. Antimicrobial Agents and Chemotherapy, 37(12), 2733–2735.
32. Pavicic, M. J., van Winkelhoff, A. J., & de Graaff, J. In vitro susceptibilities of Actinobacillus actinomycetemcomitans to a number of antimicrobial combinations. Antimicrobial Agents and Chemotherapy, 36(12), 2634–2638.
33. Freydiere, A. M., Gille, Y., Tigaud, S., & Vincent, P.. In vitro susceptibilities of 40 Campylobacter fetus subsp. jejuni strains to niridazole and metronidazole. Antimicrobial Agents and Chemotherapy, 25(1), 145–146.
34. Muller, M., & Gorrell, T. E. Metabolism and metronidazole uptake in Trichomonas vaginalis isolates with different metronidazole susceptibilities. Antimicrobial Agents and Chemotherapy, 24(5), 667–673.
35. Noyan, U., Yilmaz, S., Kuru, B., Kadir, T., Acar, O., & Buget, E.. A clinical and microbiological evaluation of systemic and local metronidazole delivery in adult periodontitis patients. Journal of Clinical Periodontology, 24(3), 158–165.
36. Bleicher, P. A.. Topical Metronidazole Therapy for Rosacea. Archives of Dermatology, 123(5), 609.
37. Wiesenfeld, H. C., Meyn, L. A., Darville, T., Macio, I. S., & Hillier, S. L.. A Randomized Controlled Trial of Ceftriaxone and Doxycycline, with or Without Metronidazole, for the Treatment of Acute Pelvic Inflammatory Disease. Clinical Infectious Diseases.
38. Kolander, S. A.. Clostridial Endocarditis. Archives of Internal Medicine, 149(2), 455.
39. Hay, P.. Recurrent bacterial vaginosis. Current Opinion in Infectious Diseases, 22(1), 82–86.
40. Jochum, F. D., & Theato, P.. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev., 42(17), 7468–7483.
41. Huh, K. M., Kang, H. C., Lee, Y. J., & Bae, Y. H. pH-sensitive polymers for drug delivery. Macromolecular Research, 20(3), 224–233.
42. Kocak, G., Tuncer, C., & Bütün, V. pH-Responsive polymers. Polymer Chemistry, 8(1), 144–176.
43. Langer, R.. New methods of drug delivery. Science, 249(4976), 1527–1533.
44. C. Pennetta , G. Floresta , A. C. Eleonora Graziano , V. Cardile , L. Rubino , M. Galimberti , A. Rescifina and V. Barbera. Functionalization of Single and Multi-Walled Carbon Nanotubes with Polypropylene Glycol Decorated Pyrrole for the Development of Doxorubicin Nano-Conveyors for Cancer Drug Delivery. Nanomaterials 2020, 10, 1073
45. Moquin, A., Hanna, R., Liang, T., Erguven, H., Gran, E. R., Arndtsen, B. A., Kakkar, A.. PEG-conjugated pyrrole-based polymers: One-pot multicomponent synthesis and self-assembly into soft nanoparticles for drug delivery. Chemical Communications, 2019, 55, 9829-9832
46. Bawa, P., Pillay, V., Choonara, Y. E., & du Toit, L. C. Stimuli-responsive polymers and their applications in drug delivery. Biomedical Materials, 4(2), 022001.
47. Boskey, E. R., Cone, R. A., Whaley, K. J., & Moench, T. R. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Human Reproduction, 16(9), 1809–1813.
48. Vermani, K., & Garg, S.. The scope and potential of vaginal drug delivery. Pharmaceutical Science & Technology Today, 3(10), 359–364.
49. Ballagh, S. , Baker, J. , Henry, D. , & Archer, D. . Safety of single daily use for one week of C31G HEC gel in women. Contraception, 66(5), 369–375.
50. Alexander, N. J., Baker, E., Kaptein, M., Karck, U., Miller, L., & Zampaglione, E.. Why consider vaginal drug administration? Fertility and Sterility, 82(1), 1–12.
51. Cadman J. Looking down the drug pipeline. GMHC Treat Issues 1998, 12, 5–9.
52. Wróblewska, M., Szymańska, E., Szekalska, M., & Winnicka, K.. Different Types of Gel Carriers as Metronidazole Delivery Systems to the Oral Mucosa. Polymers, 12(3), 680.
53. Kunkel, T. A., Bebenek, K., & McClary, J. Efficient site-directed mutagenesis using uracil-containing DNA. Bacterial Genetic Systems, 125–139.
54. Krause, M., Ukkonen, K., Haataja, T., Ruottinen, M., Glumoff, T., Neubauer, A., Vasala, A. A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures. Microbial Cell Factories, 9(1), 11.
55. Owen, D. H., & Katz, D. F. A vaginal fluid simulant. Contraception, 59(2), 91–95.
56. Josey, A. D., & Jenner, E. L.. N-Functionally Substituted Pyrroles. The Journal of Organic Chemistry, 27(7), 2466–2470.
57. Niels Clauson-Kaas, Zdenĕk Tyle: Preparation of Cis- and Trans 2,5-Dimethoxy-2-(acetamidomethyl)-2,5-dihydrofuran, of Cis- and Trans 2,5-Dimethoxy-2-(acetamidomethyl)-tetrahydrofuran and of 1-Phenyl-2-(acetamidomethyl)-pyrrole. Acta Chemica Scandinavica. 6, 1952, S. 667–670
58. Hermanson, G.. Bioconjugate Techniques, p.202. Academic Press, San Diego, California.
59. Benoy B. Bhowmik, Bhabani S. Nayak AND A. Chatterjee. Formulation development and characterization of metronidzole microencapsulated bioadhesive vagnial gel. International Journal of Pharmacy and Pharmaceutical Sciences. January 2009, 240-257
60. Kudo, T., Endo, Y., Taguchi, R., Yatsu, M., & Ito, K. Metronidazole reduces the expression of cytochrome P450 enzymes in HepaRG cells and cryopreserved human hepatocytes. Xenobiotica, 45(5), 413–419.
61. Salahuddin, A., Agarwal, S. M., Avecilla, F., & Azam, A.. Metronidazole thiosalicylate conjugates: Synthesis, crystal structure, docking studies and antiamoebic activity. Bioorganic & Medicinal Chemistry Letters, 22(17), 5694–5699.

無法下載圖示 全文公開日期 2024/09/28 (校內網路)
全文公開日期 2024/09/28 (校外網路)
全文公開日期 2024/09/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE