簡易檢索 / 詳目顯示

研究生: 賴昭宏
Chao-hung Lai
論文名稱: 數位電視天線之設計
Designs of DTV Antennas
指導教授: 楊成發
Chang-Fa Yang
口試委員: 劉馨勤
Hsin-Chin Liu
馬自莊
Tzyh-Guang Ma
李學智
Hsueh-Jyh Li
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 101
中文關鍵詞: 數位電視天線
外文關鍵詞: DTV, Antenna
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究應用XFDTD套裝模擬程式設計隱藏式汽車玻璃印刷天線,以使用於接收數位視訊廣播,其中分析了分集式接收天線於改善數位視訊廣播行動接收之效果,並且測量所設計天線的反射損失、輻射場型與接收特性,來滿足車用無線數位電視頻段接收天線之需求。由於無線數位電視廣播之優點即在於提供高品質的行動接收功能,如此可以拓展行動商務與休旅汽車市場。


This thesis applies a finite difference time domain simulation software package, XFDTD to design the concealed on glass printed automobile antennas for the use of receiving digital video broadcasting. In this study, antenna diversity for the purpose of improving the mobile reception of the digital video broadcasting is evaluated. Also, the return loss, radiation patterns and actual receiving performances of the designed antennas are measured. Those antennas may be applied in automobiles for receiving the wireless digital TV signals. Since the advantage of the wireless digital video broadcasting is to provide high quality mobile receiving, the design of concealed on glass printed automobile antennas may therefore expand remote business and the market of the RV van.

目 錄 第一章 緒論 1.1 研究背景 1 1.2 數位電視發展現況 2 1.3 研究內容 4 1.4 章節概述 5 第二章 數位電視介紹 2.1 前言 6 2.2 數位電視標準 6 2.3 數位電視編碼 9 第三章 量測技術 3.1 前言 14 3.2 反射損失之量測技術 14 3.3 遠場輻射場形之量測 17 3.3.1 遠場輻射場形之時域分析 17 3.3.2 遠場輻射場形之頻域分析 19 3.4 同軸電纜參數之量測 22 3.4.1 插入損失、反射損失、相位差以及特性阻抗量測 22 3.4.2 電纜損失之計算 23 第四章 SPACE GEAR車用天線之製作與實測 4.1 前言 24 4.2 後車燈車體之FDTD模型 24 4.2.1 後車燈車體之模擬架構 24 4.2.2 模擬與量測結果比較 25 4.3 車窗車體之FDTD模型 27 4.3.1 空間分集天線之車窗車體模擬架構 28 4.3.2 空間分集天線之模擬與量測結果比較 29 4.4 極化分集天線之設計 38 4.5 DTV頻段車用天線之改良 41 4.6 精確模擬架構 46 4.7 無反射實驗室天線場型量測 47 4.8 貼片式天線設計 53 第五章 車用數位電視廣播天線收訊效果與比較 5.1 前言 57 5.2 路徑接收強度量測 57 5.3 路徑接收強度累積分佈率 74 5.4 分集式行動接收比較 80 第六章 結論 6.1 總結 --86 6.2 具體成果 --86 6.3 未來研究與發展方向 --87 參考文獻 --88 附錄A 電磁數值方法-有限時域差分法 --91 作者簡介

參考文獻
[1] K. Fujimoto and J. R. James, Mobile Antenna Systems Handbook, Artech House, 1994.
[2] D. Viratelle and R. J. Langley, “Dual-band printed antenna for mobile telephone applications,” IEE Proc.-Microw Antennas and Propagation, vol. 147, no. 5, pp. 381-384, October 2000.
[3] J. C. Batchelor, R. J. Langley, and H. Endo, “On-glass mobile antenna performance modeling,” IEE Proc.-Microw Antennas and Propagation, vol. 148, pp. 233-238, Aug. 2001.
[4] P. Pinho, Rocha, and J. F. Pereira, “Design of a PIFA antenna using FDTD and genetic algorithms,” IEEE antenna and Propagation Sciety International Symposium, vol. 4, pp. 700-703, July 2001.
[5] H. Choo, A. Hutani, L. C. Trintinalia, and H. Ling, “Shape optimization of broadband microstrip antennas using genetic algorithm,” Electronics Letters, vol. 36, pp. 2057-5058, Dec. 2000.
[6] H. Choo and H. Ling, “Design of multiband microstrip antennas using a genetic algorithm, ” Microwave and Wireless Components Letters, vol. 12, pp. 345-347, Sept. 2002.
[7] 中華民國電視學會學術單位委託案, 數位電視地面廣播傳輸標準_美規(ATSC)與歐規(DVB-T)實地測試計劃__結案報告, 計畫主持人:許超雲所長, 中華民國90年1 月1日至90年4月30日。
[8] 電視學會無線數位電視頻道播出一覽表, 92年4月份。
[9] 經濟部數位視訊工業發展推動小組, http://www.dvo.org.tw.
[10] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagation, vol. 14, no. 4, pp. 302-307, May 1966.
[11] A. Taflove, Computational Electrodynamics The Finite-Difference Time-Domain Method, 1995.
[12] Karl S. Kunz and Raymond J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, the United States of America, 1993.
[13] J. B. Schneider, "Faster-Than-Light Propagation," IEEE Microwave and Guided Wave Letter, vol. 9, no. 2, pp. 54-56, Feb. 1999.
[14] J. B. Schneider and R. J. Kruhlak, "Inhomogeneous Waves and Faster-Than-Light Propagation in the Yee FDTD Grid," Antennas and Propagation Society International Symposium, vol. 1, pp. 184-187, July 1999.
[15] A. C. Cangellaris and R. Lee, "On the accuracy of numerical wave simulations on finite methods," J. Electromagn. Waves Application, vol. 6, no. 12, pp. 1635-1653, 1992.
[16] K. L. Shiager, J. G-Maloney, S. L. Pay, and A. F. Peterson, "Relative accuracy of several finite-difference time-domain methods in two and three dimensions," IEEE Trans. Antennas Propagation, vol. 41, pp. 1732-1737, Dec. 1993.
[17] J. Fang, "Time-domain finite difference computations for Maxwell's equations," Ph.D. dissertation, EECS Dept., Univ. California, Berkeley, 1989.
[18] T. Deveze, L. Beaulieu, and W. Tabbara, "A fourth order scheme for the FDTD algorithm applied to Maxwell's equations," IEEE APS Int. Symp. Proc., Chicago, IL, pp. 346-349, July 1992.
[19] T. Deveze, L. Beaulieu, and W. Tabbara, "An absorbing boundary condition for the fourth order FDTD scheme," IEEE APS Int. Symp. Proc., Chicago, IL, pp. 342-345. July 1992.
[20] P. G. Petropoulos, "Phase error control for FD-TD methods of second and fourth order accuracy," IEEE Trans. Antennas Propagation, vol. 42, pp. 859-862, June 1994.
[21] C. W. Manry, Jr., S. L. Broschat, and J. B. Schneider, "Higher order FDTD methods for large problems," ACES J., vol. 10, pp. 17-29, July 1995.
[22] E. A. Navarro, N. T. Sangary, and J. Litva, “Some considerations on the accuracy of the nonuniform FDTD method and its application to waveguide analysis when combined with the perfectly matched layer technique,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1115-1124, July 1996.
[23] T. G. Jurgens and A. Taflove, “Three-Dimensional Contour FDTD Modeling of Scattering from Single and Multiple Bodies,” IEEE Trans. Antennas Propagation, vol. 41, pp. 1703-1708, Dec. 1993.
[24] J. Fang, “A locally conformed finite-difference time-domain algorithm of modeling arbitrary shape planar metal strips,” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 831-837, May 1993.
[25] G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Trans. Electromagnetic Compatibility, vol. EMC-23, pp. 377-382, Nov. 1981.
[26] Z. Bi, K. Wu, C. Wu, and J. Litva, " A dispersive boundary condition for microstrip component analysis using the FD-TD method," IEEE Trans. Antennas and Propagation, vol. MTT-40, no.4, pp. 774-777, Apr. 1992.
[27] O. M. Ramahi, "Complementary operators: A method to annihilate artificial reflections arising from the truncation of the computational domain in the solution of patial differential equations," IEEE Trans. Antennas and Propagation, vol. 43, pp. 697-704, Jul. 1995.
[28] Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A Transmitting Boundary for Transient Wave Analysis,” Science Sinica, 1984.
[29] Ramzi Abou-Jaoude and Eric K. Walton, “Numerical Modeling of On-Glass Conformal Automobile Antennas,” IEEE Trans. Antennas and Propagation, Vol.46, No.6, pp.845-852, June 1998.
[30] Matthew N. O. Sadiku, Numerical Techniques in Electromagnetics, 1992.
[31] J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetics Waves,” Journal of Computational Physics, 1994.
[32] http://esl.eng.ohio-state.edu/
[33] 92年無線通訊天線技術發展與應用研討會之講義

無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE