簡易檢索 / 詳目顯示

研究生: 刁兆穎
Chao-Ying Tiao
論文名稱: 設計運用積層製造之晶格結構迫擊砲砲盤
Design of Lattice Structures for Additive Manufacturing of Mortar Baseplate
指導教授: 鄭正元
Jeng-Ywan Jeng
阿米爾 那錫爾
Aamer Nazir
口試委員: 鄭正元
Jeng-Ywan Jeng
阿米爾 那錫爾
Aamer Nazir
林上智
Shang-Chih Lin
許啟彬
Chi-Pin Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 89
中文關鍵詞: 積層製造三維列印晶格結構模擬分析輕量化工程迫擊砲
外文關鍵詞: Additive Manufacturing, 3D Printing, Lattice Structure, Simulation, Lightweight engineering, Mortar
相關次數: 點閱:331下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著國家戰略及戰爭型態的轉變,我國軍隊朝「小而精、小而強、小而巧」目標發展,就傳統武器而言,即以輕量化為首要目標,而隨著積層製造技術日漸成熟,可將其應用於軍事工業中,相異於傳統減法製造技術,能輕易產製出幾何結構更為複雜之工件,並可將許多零組件產製為單一工件,故在符合最終產品之機械性能下,能達到減輕重量及節省材料成本之雙重功效,因此,美國即漸漸擴大在陸海空三軍各式武器裝備上之應用範圍。
    鑑此,本文將藉積層製造技術,結合晶格結構設計,以國軍現役之81公厘T75式迫擊砲為研究標的,進行輕量化工程,俾提高戰術運用之靈活性及快速變換陣地之機動性,有效發揚熾盛之火力。
    最終完成六角蜂巢及凹形蜂巢等2種晶格結構之砲盤設計,並藉由電腦模擬分析,評估其機械性能可承受砲彈射擊時所產生之後座力,且經實體模型試製結果顯示,若採六角蜂巢結構設計之砲盤輕量化成效較凹形蜂巢結構佳,未來若以此進行實體工程製作,預期較現行採鍛壓方式成形之砲盤減輕約19.2 %之重量,重量將由原本之11.1公斤減輕至9公斤,可提供軍事機關執行後續相關武器構型研改參考運用。


    In recent years, with the changes in national strategy, our military has been forwards to the goal of elite troops. As the traditional weapons, reducing the weight is the primary subject of improvement. As the additive manufacturing technology matures, it can be applied to the military industry.Different from the traditional subtraction manufacturing technology, it has the capacity to produce complex geometric structures easily, and able to produce many components into a single workpiece. It is able to reduce weight and save material costs under the mechanical performance of conform to the final product. Therefore, the US has expanded the scope of applicability in military equipment.
    In view of this, this article will combine with lattice structure by means of additive manufacturing technology. With the T75 81mm mortar that currently in service with our military as the research object, carry out the project of weight reduction to improve the mobility and decrease the combatants loading.
    Finally, completed the design of two lattice structure of hexagonal honeycomb and re-entrant honeycomb. After computer simulated and analyzed, it is evaluated that its mechanical performance can bear the recoil of shooting. Through the trial-production of solid model, that present the result of the efficiency of weight reduction of the hexagonal honeycomb is better than re-entrant honeycomb. In the future, if this is used for actual manufacturing, it is expected the baseplate will reduce the weight about 19.2%, and that will be lighter than current method of forging. The weight will be reduced from the original 11.1 kg to 9 kg, and that able to provide to military units as the research and improvement for related weapon configuration as the reference.

    摘要 IV ABSTRACT V 致謝 VI 圖目錄 IX 表目錄 XIII 第1章、 緒論 1 1.1. 前言 1 1.2. 研究動機 3 1.3. 本文貢獻與架構 5 第2章、 文獻探討 6 2.1. 迫擊砲 6 2.1.1. 未來發展趨勢 6 2.1.2. 輕量化工程 6 2.2. 積層製造 7 2.2.1. 發展歷程 7 2.2.2. 特性 8 2.2.3. 製造流程 9 2.2.4. 製程技術及其適用材料 10 2.2.5. 積層製造技術於軍事裝備之應用 17 2.3. 晶格結構 24 2.3.1. 介紹 24 2.3.2. 特性 25 2.3.3. 應用 26 第3章、 結構設計與製造 28 3.1. 迫擊砲砲盤原型 28 3.2. 迫擊砲砲盤晶格結構設計 30 3.2.1. 設計概念 30 3.2.2. 設計方法及步驟 30 3.2.3. 晶格結構之砲盤 36 3.3. 以積層製造方式製造晶格結構之砲盤 44 3.3.1. 製造設備及材料 44 3.3.2. 製程步驟 46 第4章、 分析結果與討論 51 4.1. 有限元素分析法 51 4.2. 迫擊砲砲盤之應力分析 51 4.2.1. 材料參數設定 51 4.2.2. 匯入模型 52 4.2.3. 網格建立 53 4.2.4. 邊界條件設定 55 4.2.5. 分析結果 59 4.3. 討論 64 第5章、 結論與未來展望 65 5.1. 結論 65 5.2. 未來展望 69 參考文獻 71

    [1] 迫擊砲,檢自2020年7月8日。https://zh.wikipedia.org/wiki/%E8%BF%AB%E5%87%BB%E7%82%AE。
    [2] 吳若軒,迫擊炮的過去、現在和未來,科教導刊,第1期,第297頁,2018。
    [3] 馬萊特式(Mallet’s)臼砲,檢自2020年7月8日。https://www.flickr.com/photos/megashorts/6358623491。
    [4] 81公厘迫砲彈,檢自2020年9月8日。https://bulcomersks.com/military-products/ammunition/mortar-rounds/81mm-mortar-round-he-70-ld/。
    [5] 斯托克斯式(Stokes)迫擊砲,檢自2020年7月8日。https://dsa1955.fandom.com/wiki/Stokes_Mortar。
    [6] T-75式81公厘迫擊砲,檢自2020年7月20日。https://zh.wikipedia.org/wiki/T-7581%E6%AF%AB%E7%B1%B3%E8%BF%AB%E6%93%8A%E7%A0%B2。
    [7] T-75式81公厘迫擊砲,檢自2020年7月20日。https://blog.xuite.net/switch.shiu/fantasy/7689659-%E7%AC%AC2000%E6%A2%AF。
    [8] 李禮,戴煜,迫擊炮輕量化應用現狀及趨勢,新材料產業,第2期,第50-54頁,2019。
    [9] 王樂民,鄧世剛,伍啟銘,方將任,蔡智仁,81 公厘迫擊砲減重工程暨結構應力分析,2014。
    [10] Fengfeng Wang, Guolai Yang, Topological Design of a Mortar Base Plate under Impact Loads, Shock and Vibration, Volume 2021, 2021.
    [11] “Standard Terminology for Additive Manufacturing Technologies 09E01”, ASTM, 2009.
    [12] 減法及加法製造的差別,檢自2020年9月15日。https://www.3de-shop.com/additive-vs-subtractive-manufacturing-difference-pros-cons/。
    [13] Ian Gibson, David Rosen, Brent Stucker, Additive Manufacturing Technologies, 2nd ed., Springer, 2015.
    [14] “Standard Terminology for Additive Manufacturing Technologies 12A”, ASTM, 2012.
    [15] C.K. Chua, K.F. Leong, Rapid Prototyping: Principles and Applications in Manufacturing, Wiley, 1998.
    [16] Truong Do, Patrick Kwon, Chang Seop Shin, Process development toward full-density stainless steel parts with binder jetting printing, International Journal of Machine Tools and Manufacture, Vol. 121, pp. 50-60, 2017.
    [17] 黏著劑噴印成型設備,檢自2020年9月17日。https://cement3d.com/tcast/en/index.html。
    [18] Scott M. Thompson, Linkan Bian, Nima Shamsaei, Aref Yadollahi, An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics, Additive Manufacturing, Vol. 8, pp. 36-62, 2015.
    [19] Bhaskar Dutta, Francis H. Froes, Additive Manufacturing of Titanium Alloys, 1st ed., Elsevier, 2016.
    [20] Omar A. Mohamed, Syed H. Masood, Jahar L. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Advances in Manufacturing 3,pp. 42-53, 2015.
    [21] 材料擠製成型技術介紹,檢自2020年9月21日。https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/materialextrusion/。
    [22] Flaviana Calignano, Diego Manfredi, Elisa Paola Ambrosio, Sara Biamino, Mariangela Lombardi, Eleonora Atzeni, Alessandro Salmi, Paolo Minetola, Luca Iuliano, Paolo Fino, Overview on Additive Manufacturing Technologies, Proceedings of the IEEE, Vol. 105, pp. 593-612, 2017.
    [23] Merum Sireesha, Jeremy Lee, A. Sandeep Kranthi Kiran, Veluru Jagadeesh Babu, Bernard B. T. Keee, Seeram Ramakrishna, A review on additive manufacturing and its way into the oil and gas industry, RSC Advances, issue 40, pp. 22460-22468, 2018.
    [24] J.P. Kruth, L. Froyen b, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, Selective laser melting of iron-based powder, Journal of Materials Processing Technology, Vol. 149, pp. 616-622, 2004.
    [25] William E. Frazier, Metal Additive Manufacturing: A Review, Journal of Materials Engineering and Performance, Vol. 23, pp. 1917-1928, 2014.
    [26] Luis E. Crialesa, Yiğit M. Arısoy, Brandon Lane, Shawn Moylan, Alkan Donmez, Tuğrul Özela, Laser powder bed fusion of nickel alloy 625:Experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis,Interational Journal of Machine Tools and Manufacture, Vol. 121, pp.22-36, 2017.
    [27] Pedram Parandoush, Dong Lin, A review on additive manufacturing of polymer-fiber composites, Composite Structures, Vol. 185, pp. 36-53, 2017.
    [28] Daekeon Ahn, Jin-Hwe Kweon, Jinho Choi, Seokhee Lee, Quantification of surface roughness of parts processed by laminated object manufacturing, Journal of Materials Processing Technology, Vol. 212, pp. 339-346, 2012.
    [29] 光聚合固化介紹,檢自2020年9月29日。https://make.3dexperience.3ds.com/processes/photopolymerization。
    [30] DEFENSE ADDITIVE MANUFACTURING-DOD Needs to Systematically Track Department-wide 3D Printing Efforts, United States Government Accountability Office, 2015.
    [31] Audit of the DoD’s Use of Additive Manufacturing for Sustainment Parts, Inspector General, U.S. Department of Defense, 2019.
    [32] Ture Wester, Nature Teaching Structures, International Journal of Space Structures, pp. 135-147, 2002.
    [33] Recep M. Gorguluarslan, Umesh N. Gandhi, Raghuram Mandapati, Seung-Kyum Choi, Design and fabrication of periodic lattice-based cellular structures, Computer-Aided Design & Applications, Vol. 13, No. 1, pp. 50-62, 2016.
    [34] 蜂巢結構,檢自2020年11月4日。https://community.snapwire.co/photo/detail/5d5814777773e861274f4324。
    [35] 骨骼結構,檢自2020年11月4日。https://slideplayer.com/slide/12776570/。
    [36] Guoying Dong, Yunlong Tang, Yaoyao Fiona Zhao, A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing, Journal of Mechanical Design, Vol. 139,Issue 10,No. 100906, 2017.
    [37] Wenjin Tao, Ming C. Leu, Design of lattice structure for additive manufacturing, International Symposium on Flexible Automation, pp.326-332, 2016.
    [38] Tiantian Li, Yanyu Chen, Xiaoyi Hu, Yangbo Li, LifengWang, Exploiting negative Poisson's ratio to design 3D-printed composites with enhanced mechanical properties, Materials & Design, Vol. 142, pp. 247-258, 2018.
    [39] Chen Pan, Yafeng Han, Jiping Lu, Design and Optimization of Lattice Structures:A Review, Applied Sciences, 2020.
    [40] Andrey Bolshakov, The three-dimensional lattice as an architectural space, MATEC Web of Conferences, Vol. 212, No. 04005, 2018.
    [41] 以三維列印方式製造輕巧之無人機,檢自2021年2月21日。https://World's First Jet-Powered, 3D Printed UAV Tops 150 MPH | Stratasys。
    [42] 無須充氣之輪胎,檢自2021年2月21日。https://www.trendhunter.com/trends/airless-tire。
    [43] 以三維列印方式製造鈦胸骨和肋骨植入物,檢自2021年2月21日。https://www.csiro.au/en/News/News-releases/2015/Cancer-patient-receives-3D-printed-ribs-in-world-first-surgery。
    [44] Ian Stroud, Boundary Representation Modelling Techniques, Springer, pp. 11-27, 2006.
    [45] nTopology,檢自2021年2月21日。https://ntopology.com/company/about-us/。
    [46] HP Multi Jet Fusion technology, Technical white paper, HP Development Company, 2018.
    [47] 惠普Jet Fusion 4200機台,檢自2021年3月18日。https://www.grandtech.com/tw/solutions/0k197259230737183162?qcat=0K197253328661274588。
    [48] 聚醯胺12粉末及製成之工件,檢自2021年3月18日。https://3dmart.com.tw/shop/Pa12-smooth-fresh-powder。
    [49] AISI 4340,檢自2021年3月18日。https://www.azom.com/article.aspx?ArticleID=6772。
    [50] 諶玉紅,郝俊勤 ,不同行軍速度下單兵適宜負荷量研究,中華勞動衛生職業病雜誌,12期,2008年。
    [51] ExOne X1 160 pro介紹,檢自2021年4月18日。https://www.exone.com/en-US/X1-160Pro。
    [52] Electron beam additive manufacturing systems, Sciaky inc. ,2020.
    [53] Sciaky公司EBAM 68機台,檢自2021年4月18日。https://www.3dprinteros.com/printers/sciaky-ebam-68-3d-printer-software/。

    無法下載圖示 全文公開日期 2022/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE