簡易檢索 / 詳目顯示

研究生: Addisu Negash Ali
Addisu Negash Ali
論文名稱: 熱處理及劇烈塑性變形SiCp/AZ61鎂合金金屬複合材料的結構完整性評估
Structural Integrity Assessment of SiCp/AZ61 Magnesium Alloy Metal Matrix Composites Processed by Heat Treatment and Severe Plastic Deformation
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 黃崧任
Song-Jeng Huang
丘群
Chun Chiu
向四海
Su-Hai Hsiang
楊申語
Sen-Yeu Yang
陳復國
Fuh-Kuo Chen
林柏廷
Po Ting Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 182
中文關鍵詞: 金屬基複合材料熱處理;劇烈塑性變形延性破壞
外文關鍵詞: Metal matrix composite, Heat treatment process, Severe plastic deformation, Ductile fracture
相關次數: 點閱:262下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用熱處理(均質化和時效熱處理)及等徑轉角擠型(ECAP)A路徑劇烈塑性變形方法,改善攪拌鑄造法製備之鎂基複合材料(SiCp / AZ61)的微結構和機械性質。以不同重量百分比(0%,2%和5%)SiC顆粒(SiCp)研究不同處理條件下強化相含量的影響。使用光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)、硬度測試和X光繞射(XRD)分析評估ECAP擠壓道次和SiCp重量百分比對熱處理過程的微觀結構的影響。藉由夏比(Charpy)衝擊和單軸拉伸試驗數據之分析發現增強了機械性能。以掃描電子顯微鏡(SEM)特徵進一步驗證衝擊和拉伸試驗斷裂表面之脆 - 韌性。採用應變硬化率(θ)研究了AZ61鎂合金和SiCp / AZ61 Mg MMCs的ECAP塑性變形加工硬化行為。基於Ludwik方程的Crussard-Jaoul方法識別塑性變形機制和塑性變形階段的細節。採用實驗設計(DOE)和Gurson-Tvergaard-Needleman(GTN)模式表面響應方法估算最佳GTN破壞參數,並分別驗證其對AZ61鎂合金ECAP變形延性斷裂行為的顯著影響。應用Hollomon流動應力來識別均勻變形和非均勻變形區域,分別研究空洞成核和聚結過程。在12小時時效的2 wt% SiCp / AZ61Mg MMC上觀察到時效熱處理過程顯著,其誘導較低的微硬度值並且導致無顆粒區域和不連續的第二相的形成。在更高ECAP擠壓道次和SiCp重量百分比下,觀察到更高的彈性模量,ECAP塑性變形和SiCp重量百分比變化的強度,延展性和加工硬化行為都不同。藉由ECAP變形的AZ61鎂合金的韌性斷裂行為結果表明同時改變三軸應力和損傷變量可以大幅度的影響模擬結果、GTN模型曲線及曲線擬合。本研究的主要貢獻是藉由改變微結構組成相的存在和數量及增進其均勻分佈以提高 SiCp/AZ61 MMCs 的機械性質。


    In this work, heat treatment (homogenization and ageing heat treatment processes) and extrusion plus A route type equal channel angular pressing (ECAP) severe plastic deformation methods were used to improve the microstructural and mechanical properties of as-cast SiCp/AZ61 magnesium metal matrix composites (Mg MMCs) fabricated by stir casting method. Different weight percentages (0%, 2% and 5%) of SiC particles (SiCp) were considered to study the effects of contents of reinforcements at different treatment conditions. Microstructural changes due to heat treatment processes, the number of ECAP passes and SiCp weight percentages were assessed using optical microscope (OM), scanning electron microscope (SEM), microhardness test and X-ray diffraction (XRD) patterns analysis. Enhanced mechanical properties were analyzed based on the Charpy impact and the uniaxial tensile test data. Furthermore, the brittle-ductile properties were testified by using scanning electron microscopy (SEM) features of Charpy impact and tensile test fracture surfaces. The work-hardening behavior of AZ61 magnesium alloy and SiCp/AZ61 Mg MMCs deformed by ECAP plastic deformation were studied by considering strain hardening rate (θ). The details of plastic deformation mechanisms and plastic deformation stages were identified by using a Crussard-Jaoul method based on the Ludwik equation. The response surface methodology in the design of experiments (DOE) wizard and Gurson-Tvergaard-Needleman (GTN) model were employed to estimate the optimum GTN damage parameters and to validate their significant effects respectively on the ductile fracture behavior of ECAP deformed AZ61 magnesium alloy. Hollomon flow stress was applied to identify uniform deformation and non-uniform deformation regions to investigate the void nucleation and coalescence processes separately. From the results obtained, ageing heat treatment process was seen significant on the 12 h aged 2 wt% SiCp/AZ61 Mg MMC which induced lower microhardness values and results in the formations of particle free regions and discontinuous secondary phases. At a higher number of ECAP passes and higher SiCp weight percentage, higher elastic modulus was seen enhanced. The strength, ductility and work-hardening behaviors were varied for both ECAP plastic deformation and SiCp weight percentage variations. The results of ductile fracture behavior of ECAP deformed AZ61 magnesium alloy showed that varying both stress triaxiality and damage variables simultaneously can greatly affect the curve fitting process of experimental, simulation and GTN model curves. The main contribution of this research work is enhancing the mechanical properties of SiCp/AZ61 Mg MMCs by modifying the presence and amount of microstructural constituent phases and by improving their uniform distribution.

    Table of contents Abstract (摘要) 1 Abstract 2 Acknowledgement 4 Table of contents 5 List of figures 9 List of tables 17 Chapter 1. Introduction 19 1.1. Motivation 19 1.2. Overview 20 1.3. Types of metal matrix composites 21 1.3.1. Matrix 22 1.4. Thesis layout 24 Chapter 2. Background 26 2.1. Nano/micro-interface structures 26 2.1.1. Interfacial reaction 26 2.1.2. Interfacial bonding 30 2.1.3. Particle size 32 2.1.4. Reinforcement volume fractions/weight percentage 34 2.2. Nano/Micro-Macro structure integrity mechanisms 35 2.2.1. Strengthening mechanisms of MMCs 35 2.2.2. Strength weakening effects of particulate reinforced MMCs 39 Chapter 3. Fabrication methods and experimental procedures 42 3.1. Magnesium alloys 42 3.2. Magnesium alloy metal matrix composites 43 3.3. Fabrication methods 43 3.3.1. Solid state fabrication processes 44 3.3.2. Liquid state Processing 46 3.3.3. Deposition processing 48 3.4. Heat treatment processes 50 3.4.1. Homogenization heat treatment 51 3.4.2. Solution heat treatment 51 3.4.3. Ageing heat treatment 52 3.5. Plastic deformation processes 52 3.5.1. Types of traditional plastic deformation processes 52 3.5.2. Types of severe plastic deformation processes 53 3.6. Objectives 59 3.7. Experimental procedures 60 Chapter 4. Effects of heat treatment process on the microstructure and mechanical properties of SiCp/AZ61 Mg MMCs 63 4.1. Introduction 63 4.2. Experimental procedure 66 4.3. Results 70 4.3.1. Microhardness 70 4.3.2. Microstructure 71 4.3.3. X-ray diffraction (XRD) measurements 77 4.3.4. Quantitative phase analysis 80 4.3.5. Microstructural behavior 83 4.3.6. Fracture surface morphologies 86 4.3.7. Summary 92 Chapter 5. Effects of severe plastic deformation on the microstructure and mechanical properties of SiCp/AZ61 Mg MMCs 94 5.1. Introduction 94 5.2. Experimental procedures 98 5.3. Results and discussion 102 5.3.1. Equal channel angular pressing (ECAP) plastic deformation 102 5.3.2. OM microstructure of ECAP deformed SiCp/AZ61 Mg MMCs 104 5.3.3. SEM microstructure of ECAP deformed SiCp/AZ61 Mg MMCs 111 5.3.4. Microhardness and tensile strength 117 5.3.5. Ductility and work-hardening behavior 120 5.3.6. Fracture surface 130 5.3.7. Summary 132 Chapter 6. Analysis and modeling of the ductile fracture behavior of ECAP deformed AZ61 magnesium alloy 134 6.1. Introduction 134 6.2. Methodology 138 6.2.1. Materials and specimen design 138 6.2.2. Design of experiments (DOE) 139 6.2.3. Finite element simulation 142 6.2.4. Constitutive relations and yielding criteria 143 6.2.5. Descriptions of damage modeling 145 6.3. Results and discussion 147 6.3.1. Experimental data analysis and finite element simulation 147 6.3.2. GTN damage model parameters based on response surface methodology 151 6.3.3. Verification of effects of GTN damage parameters and stress triaxialities 160 6.3.4. Fracture surface analysis 163 6.3.5. Summary 164 Chapter 7. Conclusions 165 Reference 166 Appendix: Summary of mechanical properties of SiCp/AZ61 Mg MMCs. 179

    Reference
    [1] S.P. Rawal, Metal-matrix composites for space applications, Jom, 53 (2001) 14-17.
    [2] T. Palucka, B. Bensaude-Vincent, Composites overview, History of Recent Science and Technology.–19 жовтня, (2002).
    [3] D. Miracle, Metal matrix composites–from science to technological significance, Composites science and technology, 65 (2005) 2526-2540.
    [4] M. Rittner, Metal matrix composites in the 21st century: markets and opportunities, CT: BCC Inc., Norwalk, (2000).
    [5] K.K. Chawla, Ceramic matrix composites, in: Composite Materials, Springer, 1998, pp. 212-251.
    [6] E. Starke Jr, H. Rashed, Reference module in materials science and materials engineering, alloys: aluminum, Elsevier, (2017) 18-24.
    [7] W.H. Hunt, Particulate reinforced MMCs, (2000).
    [8] E. Gordo, R. Caram, V. Amigo Borras, Titanium Alloys: Properties, Processing and Applications, in, WILEY-V CH VERLAG GMBH POSTFACH 101161, 69451 WEINHEIM, GERMANY, 2017.
    [9] J. Gray, B. Luan, Protective coatings on magnesium and its alloys—a critical review, Journal of alloys and compounds, 336 (2002) 88-113.
    [10] K. Braszczyńska-Malik, J. Kamieniak, Analysis of interface between components in AZ91 magnesium alloy foam composite with Ni-P coated fly ash cenospheres, Journal of Alloys and Compounds, 720 (2017) 352-359.
    [11] L.-J. Zhang, D.-L. Yang, F. Qiu, J.-G. Wang, Q.-C. Jiang, Effects of reinforcement surface modification on the microstructures and tensile properties of SiCp/Al2014 composites, Materials Science and Engineering: A, 624 (2015) 102-109.
    [12] L. Tham, M. Gupta, L. Cheng, Predicting the failure strains of Al/SiC composites with reacted matrix–reinforcement interfaces, Materials Science and Engineering: A, 354 (2003) 369-376.
    [13] T. Clyne, F. Jones, Composites: interfaces in encyclopaedia of materials: science and technology, Mortensen A (ed), 3 (2001) 17.
    [14] B. Inem, G. Pollard, Interface structure and fractography of a magnesium-alloy, metal-matrix composite reinforced with SiC particles, Journal of Materials Science, 28 (1993) 4427-4434.
    [15] K. Chu, F. Wang, X.-h. Wang, Y.-b. Li, Z.-r. Geng, D.-j. Huang, H. Zhang, Interface design of graphene/copper composites by matrix alloying with titanium, Materials & Design, 144 (2018) 290-303.
    [16] K. Chu, F. Wang, Y.-b. Li, X.-h. Wang, D.-j. Huang, H. Zhang, Interface structure and strengthening behavior of graphene/CuCr composites, Carbon, 133 (2018) 127-139.
    [17] X. Guo, Q. Guo, J. Nie, Z. Liu, Z. Li, G. Fan, D.-B. Xiong, Y. Su, J. Fan, D. Zhang, Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites, Materials Science and Engineering: A, 711 (2018) 643-649.
    [18] S. Xiang, X. Wang, M. Gupta, K. Wu, X. Hu, M. Zheng, Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties, Scientific reports, 6 (2016) 38824.
    [19] A. Sanaty-Zadeh, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect, Materials Science and Engineering: A, 531 (2012) 112-118.
    [20] R. Casati, M. Vedani, Metal matrix composites reinforced by nano-particles—a review, Metals, 4 (2014) 65-83.
    [21] V. Nardone, K. Prewo, On the strength of discontinuous silicon carbide reinforced aluminum composites, Scripta Metallurgica, 20 (1986) 43-48.
    [22] X. Pang, Y. Xian, W. Wang, P. Zhang, Tensile properties and strengthening effects of 6061Al/12 wt% B4C composites reinforced with nano-Al2O3 particles, Journal of Alloys and Compounds, 768 (2018) 476-484.
    [23] X. Qiao, T. Ying, M. Zheng, E. Wei, K. Wu, X. Hu, W. Gan, H. Brokmeier, I. Golovin, Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP), Materials Characterization, 121 (2016) 222-230.
    [24] C. Muga, Z. Zhang, Strengthening mechanisms of magnesium-lithium based alloys and composites, Advances in Materials Science and Engineering, 2016 (2016).
    [25] D. Hull, T.W. Clyne, An introduction to composite materials, Cambridge university press, 1996.
    [26] F. Mirza, D. Chen, A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites, Materials, 8 (2015) 5138-5153.
    [27] B. Mani, M. Paydar, Application of forward extrusion-equal channel angular pressing (FE-ECAP) in fabrication of aluminum metal matrix composites, Journal of Alloys and Compounds, 492 (2010) 116-121.
    [28] A. Tiwari, L. Hihara, J. Rawlins, Intelligent coatings for corrosion control, Butterworth-Heinemann, 2014.
    [29] M. Mounib, M. Pavese, C. Badini, W. Lefebvre, H. Dieringa, Reactivity and microstructure of Al2O3-reinforced magnesium-matrix composites, Advances in Materials Science and Engineering, 2014 (2014).
    [30] K. Shirvanimoghaddam, S.U. Hamim, M.K. Akbari, S.M. Fakhrhoseini, H. Khayyam, A.H. Pakseresht, E. Ghasali, M. Zabet, K.S. Munir, S. Jia, Carbon fiber reinforced metal matrix composites: Fabrication processes and properties, Composites Part A: Applied Science and Manufacturing, 92 (2017) 70-96.
    [31] J. Hashim, L. Looney, M. Hashmi, Metal matrix composites: production by the stir casting method, Journal of materials processing technology, 92 (1999) 1-7.
    [32] M. Gupta, W. Wong, Magnesium-based nanocomposites: Lightweight materials of the future, Materials Characterization, 105 (2015) 30-46.
    [33] D. Kopeliovich, SubsTech Substances & Technologies, Retrieved 12th August, (2011).
    [34] C. Bolfarini, V.C. Srivastava, Spray Forming of Novel Materials, in: Metal Sprays and Spray Deposition, Springer, 2017, pp. 521-561.
    [35] N. Hansen, C. Barlow, Plastic deformation of metals and alloys, in: Physical Metallurgy (Fifth Edition), Elsevier, 2015, pp. 1681-1764.
    [36] R. Valiev, Producing bulk nanostructured metals and alloys by severe plastic deformation (SPD), in: Nanostructured Metals and Alloys, Elsevier, 2011, pp. 3-39.
    [37] M. Kawasaki, T.G. Langdon, Using severe plastic deformation to fabricate strong metal matrix composites, Materials Research, 20 (2017) 46-52.
    [38] T.G. Langdon, The principles of grain refinement in equal-channel angular pressing, Materials Science and Engineering: A, 462 (2007) 3-11.
    [39] I. Sabirov, O. Kolednik, R. Valiev, R. Pippan, Equal channel angular pressing of metal matrix composites: effect on particle distribution and fracture toughness, Acta Materialia, 53 (2005) 4919-4930.
    [40] E. Aghion, B. Bronfin, D. Eliezer, The role of the magnesium industry in protecting the environment, Journal of materials processing technology, 117 (2001) 381-385.
    [41] H. Friedrich, S. Schumann, Research for a “new age of magnesium” in the automotive industry, Journal of Materials Processing Technology, 117 (2001) 276-281.
    [42] B. Mordike, T. Ebert, Magnesium: Properties—applications—potential, Materials Science and Engineering: A, 302 (2001) 37-45.
    [43] S. Sepahi-Boroujeni, A. Sepahi-Boroujeni, Improvements in microstructure and mechanical properties of AZ80 magnesium alloy by means of an efficient, novel severe plastic deformation process, Journal of Manufacturing Processes, 24 (2016) 71-77.
    [44] A. Fata, G. Faraji, M. Mashhadi, V. Tavakkoli, Hot tensile deformation and fracture behavior of ultrafine-grained AZ31 magnesium alloy processed by severe plastic deformation, Materials Science and Engineering: A, 674 (2016) 9-17.
    [45] S. Sahoo, R. Sabat, S. Panda, S. Mishra, S. Suwas, Mechanical Property of Pure Magnesium: From Orientation Perspective Pertaining to Deviation from Basal Orientation, Journal of Materials Engineering and Performance, 24 (2015) 2346-2353.
    [46] N. Chawla, Y.-L. Shen, Mechanical behavior of particle reinforced metal matrix composites, Advanced engineering materials, 3 (2001) 357-370.
    [47] M. Shen, X. Wang, T. Ying, K. Wu, W. Song, Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano SiC particles, Journal of Alloys and Compounds, 686 (2016) 831-840.
    [48] P.S. Bains, S.S. Sidhu, H. Payal, Fabrication and machining of metal matrix composites: A review, Materials and Manufacturing Processes, 31 (2016) 553-573.
    [49] S. Golovin, I. Renne, Development of microplastic deformation in composite iron-based materials, Strength of Materials, 9 (1977) 468-471.
    [50] X. Wang, X. Hu, W. Liu, J. Du, K. Wu, Y. Huang, M. Zheng, Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites, Materials Science and Engineering: A, 682 (2017) 491-500.
    [51] M.-B. Yang, X.-F. Liang, L. Hui, F.-S. Pan, Effects of solution heat treatment on microstructure and mechanical properties of AZ61-0.7 Si magnesium alloy, Transactions of Nonferrous Metals Society of China, 20 (2010) s416-s420.
    [52] P. Diffraction, Theory and Practice, Dinnebier et al., RSCPublishing, (2008).
    [53] H. Zhou, L. Hu, H. Sun, X. Chen, Synthesis of nanocrystalline Mg-based Mg–Ti composite powders by mechanical milling, Materials Characterization, 106 (2015) 44-51.
    [54] T. Ungár, Microstructural parameters from X-ray diffraction peak broadening, Scripta Materialia, 51 (2004) 777-781.
    [55] L. Zheng, H. Nie, W. Liang, H. Wang, Y. Wang, Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys, Journal of Magnesium and Alloys, 4 (2016) 115-122.
    [56] J. Harti, T. Prasad, M. Nagaral, K.N. Rao, Hardness and Tensile Behavior of Al2219-TiC Metal Matrix Composites, Journal of Mechanical Engineering and Automation, 6 (2016) 8-12.
    [57] A. Inegbenebor, C. Bolu, P. Babalola, A. Inegbenebor, O. Fayomi, Aluminum Silicon Carbide Particulate Metal Matrix Composite Development Via Stir Casting Processing, Springer, (2016).
    [58] D. Zhu, W. Kriven, SHEAR INDUCED TRANSFORMATION IN EN STATITE, in: 20th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures-A: Ceramic Engineering and Science Proceedings, Volume 17, John Wiley & Sons, 2009, pp. 383.
    [59] P. Cordier, T. Ungár, L. Zsoldos, G. Tichy, Dislocation creep in MgSiO3 perovskite at conditions of the Earth's uppermost lower mantle, Nature, 428 (2004) 837-840.
    [60] N.M. Chelliah, H. Singh, M. Surappa, Microstructural evolution and strengthening behavior in in-situ magnesium matrix composites fabricated by solidification processing, Materials Chemistry and Physics, 194 (2017) 65-76.
    [61] L.S. Toth, C. Gu, Ultrafine-grain metals by severe plastic deformation, Materials Characterization, 92 (2014) 1-14.
    [62] H. Yu, Y. Xin, M. Wang, Q. Liu, Hall-Petch relationship in Mg alloys: A review, Journal of Materials Science & Technology, (2017).
    [63] W. Yuan, S. Panigrahi, J.-Q. Su, R. Mishra, Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy, Scripta Materialia, 65 (2011) 994-997.
    [64] T. Krajňák, P. Minárik, J. Gubicza, K. Máthis, R. Kužel, M. Janeček, Influence of equal channel angular pressing routes on texture, microstructure and mechanical properties of extruded AX41 magnesium alloy, Materials Characterization, 123 (2017) 282-293.
    [65] M. Rifai, H. Miyamoto, H. Fujiwara, Effect of ECAP deformation route on the degree of anisotropy of microstructure of extremely low CN Fe-20mass% Cr alloy, Metals, 4 (2014) 55-63.
    [66] M. Haghshenas, Mechanical characteristics of biodegradable magnesium matrix composites: A review, Journal of Magnesium and Alloys, 5 (2017) 189-201.
    [67] Z. Wang, K. Georgarakis, K. Nakayama, Y. Li, A. Tsarkov, G. Xie, D. Dudina, D. Louzguine-Luzgin, A. Yavari, Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites, Scientific reports, 6 (2016) 24384.
    [68] J. Kaczmar, K. Pietrzak, W. Włosiński, The production and application of metal matrix composite materials, Journal of materials processing technology, 106 (2000) 58-67.
    [69] F. Zaïri, B. Aour, J.-M. Gloaguen, M. Naït-Abdelaziz, J.-M. Lefebvre, Numerical modelling of elastic–viscoplastic equal channel angular extrusion process of a polymer, Computational materials science, 38 (2006) 202-216.
    [70] H. Lin, M. Yang, H. Tang, F. Pan, Effect of minor Sc on the microstructure and mechanical properties of AZ91 Magnesium Alloy, Progress in Natural Science: Materials International, 28 (2018) 66-73.
    [71] A. Muralidhar, S. Narendranath, H.S. Nayaka, Effect of equal channel angular pressing on AZ31 wrought magnesium alloys, Journal of Magnesium and Alloys, 1 (2013) 336-340.
    [72] R. Rahmany-Gorji, A. Alizadeh, H. Jafari, Microstructure and mechanical properties of stir cast ZX51/Al2O3p magnesium matrix composites, Materials Science and Engineering: A, 674 (2016) 413-418.
    [73] S. Aravindan, P. Rao, K. Ponappa, Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process, Journal of Magnesium and Alloys, 3 (2015) 52-62.
    [74] K.O. Pedersen, I. Westermann, T. Furu, T. Børvik, O.S. Hopperstad, Influence of microstructure on work-hardening and ductile fracture of aluminium alloys, Materials & Design, 70 (2015) 31-44.
    [75] J. Lian, Z. Jiang, J. Liu, Theoretical model for the tensile work hardening behaviour of dual-phase steel, Materials Science and Engineering: A, 147 (1991) 55-65.
    [76] S.-J. Huang, A.N. Ali, Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite, Materials Science and Engineering: A, 711 (2018) 670-682.
    [77] J.-Y. Lee, D. Steglich, M.-G. Lee, Fracture prediction based on a two-surface plasticity law for the anisotropic magnesium alloys AZ31 and ZE10, International Journal of Plasticity, (2017).
    [78] W. Fu, R. Wang, J. Zhang, K. Wu, G. Liu, J. Sun, The effect of precipitates on voiding, twinning, and fracture behaviors in Mg alloys, Materials Science and Engineering: A, 720 (2018) 98-109.
    [79] D. Sampath, R. Akid, R. Morana, Estimation of crack initiation stress and local fracture toughness of Ni-alloys 945X (UNS N09946) and 718 (UNS N07718) under hydrogen environment via fracture surface topography analysis, Engineering Fracture Mechanics, (2017).
    [80] M. Avvari, S. Narendranath, H.S. Nayaka, Effect of Processing Routes on AZ31 Alloy Processed By Severe Plastic Deformation, Procedia Materials Science, 5 (2014) 1560-1566.
    [81] M. Ebrahimi, C. Gode, Severely deformed copper by equal channel angular pressing, Progress in Natural Science: Materials International, 27 (2017) 244-250.
    [82] T. Krajňák, P. Minárik, J. Stráský, K. Máthis, M. Janeček, Mechanical properties of ultrafine-grained AX41 magnesium alloy at room and elevated temperatures, Materials Science and Engineering: A, (2017).
    [83] D. Kubacka, A. Yamamoto, P. Wieciński, H. Garbacz, Biological behavior of titanium processed by severe plastic deformation, Applied Surface Science, (2018).
    [84] B.S.J. Bin, Y.T. Tan, K.S. Fong, M.J. Tan, Effect of severe plastic deformation and post-annealing on the mechanical properties and bio-corrosion rate of AZ31 magnesium alloy, Procedia Engineering, 207 (2017) 1475-1480.
    [85] M. Cockcroft, D. Latham, Ductility and the workability of metals, J Inst Metals, 96 (1968) 33-39.
    [86] A. Freudenthal, The inelastic behavior of solids, Wiley, New York, (1950).
    [87] J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields∗, Journal of the Mechanics and Physics of Solids, 17 (1969) 201-217.
    [88] G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering fracture mechanics, 21 (1985) 31-48.
    [89] F.A. McClintock, A criterion for ductile fracture by the growth of holes, Journal of applied mechanics, 35 (1968) 363-371.
    [90] T. Wierzbicki, Y. Bao, Y.-W. Lee, Y. Bai, Calibration and evaluation of seven fracture models, International Journal of Mechanical Sciences, 47 (2005) 719-743.
    [91] S. Shima, M. Oyane, Plasticity theory for porous metals, International Journal of Mechanical Sciences, 18 (1976) 285-291.
    [92] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media, Journal of engineering materials and technology, 99 (1977) 2-15.
    [93] G. Rousselier, Ductile fracture models and their potential in local approach of fracture, Nuclear engineering and design, 105 (1987) 97-111.
    [94] J. Lemaitre, J.-L. Chaboche, Mechanics of solid materials, Cambridge university press, 1994.
    [95] J.-L. Chaboche, Continuous damage mechanics—a tool to describe phenomena before crack initiation, Nuclear Engineering and Design, 64 (1981) 233-247.
    [96] V. Tvergaard, Influence of void nucleation on ductile shear fracture at a free surface, Journal of the Mechanics and Physics of Solids, 30 (1982) 399-425.
    [97] V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta metallurgica, 32 (1984) 157-169.
    [98] A.S. Khan, H. Liu, A new approach for ductile fracture prediction on Al 2024-T351 alloy, International Journal of Plasticity, 35 (2012) 1-12.
    [99] H. Li, M. Fu, J. Lu, H. Yang, Ductile fracture: experiments and computations, International journal of plasticity, 27 (2011) 147-180.
    [100] A.S. Khan, A. Pandey, T. Gnäupel-Herold, R.K. Mishra, Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures, International Journal of Plasticity, 27 (2011) 688-706.
    [101] T.D. Horn, C.B. Silbermann, P. Frint, M.F.-X. Wagner, J. Ihlemann, Strain localization during equal-channel angular pressing analyzed by finite element simulations, Metals, 8 (2018) 55.
    [102] A.S. Khan, C.S. Meredith, Thermo-mechanical response of Al 6061 with and without equal channel angular pressing (ECAP), International Journal of Plasticity, 26 (2010) 189-203.
    [103] K.-H. Jung, D.-K. Kim, Y.-T. Im, Y.-S. Lee, Prediction of the effects of hardening and texture heterogeneities by finite element analysis based on the Taylor model, International Journal of Plasticity, 42 (2013) 120-140.
    [104] J. Samei, L. Zhou, J. Kang, D.S. Wilkinson, Microstructural analysis of ductility and fracture in fine-grained and ultrafine-grained vanadium-added DP1300 steels, International Journal of Plasticity, (2018).
    [105] G. Majzoobi, M. Kashfi, N. Bonora, G. Iannitti, A. Ruggiero, E. Khademi, Damage characterization of aluminum 2024 thin sheet for different stress triaxialities, Archives of Civil and Mechanical Engineering, 18 (2018) 702-712.
    [106] Y.-S. Ma, D.-Z. Sun, F. Andrieux, K.-S. Zhang, Influences of initial porosity, stress triaxiality and Lode parameter on plastic deformation and ductile fracture, Acta Mechanica Solida Sinica, 30 (2017) 493-506.
    [107] Y. Zhu, M.D. Engelhardt, Prediction of Ductile Fracture for Metal Alloys Using a Shear Modified Void Growth Model, Engineering Fracture Mechanics, (2018).
    [108] R. Kiran, K. Khandelwal, A triaxiality and Lode parameter dependent ductile fracture criterion, Engineering Fracture Mechanics, 128 (2014) 121-138.
    [109] N. Benseddiq, A. Imad, A ductile fracture analysis using a local damage model, International Journal of Pressure Vessels and Piping, 85 (2008) 219-227.
    [110] H. Min, L. Fuguo, W. Zhigang, Forming limit stress diagram prediction of aluminum alloy 5052 based on GTN model parameters determined by in situ tensile test, Chinese Journal of Aeronautics, 24 (2011) 378-386.
    [111] B. Teng, W. Wang, Y. Xu, Ductile fracture prediction in aluminium alloy 5A06 sheet forming based on GTN damage model, Engineering Fracture Mechanics, 186 (2017) 242-254.
    [112] S. Gatea, H. Ou, B. Lu, G. McCartney, Modelling of ductile fracture in single point incremental forming using a modified GTN model, Engineering Fracture Mechanics, 186 (2017) 59-79.
    [113] Y. Yan, Q. Sun, J. Chen, H. Pan, The initiation and propagation of edge cracks of silicon steel during tandem cold rolling process based on the Gurson–Tvergaard–Needleman damage model, Journal of Materials Processing Technology, 213 (2013) 598-605.
    [114] M. Abbasi, M. Ketabchi, H. Izadkhah, D. Fatmehsaria, A. Aghbash, Identification of GTN model parameters by application of response surface methodology, Procedia engineering, 10 (2011) 415-420.
    [115] B. Teng, W. Wang, Y. Liu, S. Yuan, Bursting prediction of hydroforming aluminium alloy tube based on Gurson-Tvergaard-Needleman damage model, Procedia Engineering, 81 (2014) 2211-2216.
    [116] J. Zhai, T. Luo, X. Gao, S.M. Graham, M. Baral, Y.P. Korkolis, E. Knudsen, Modeling the ductile damage process in commercially pure titanium, International Journal of Solids and Structures, 91 (2016) 26-45.
    [117] B. Dutta, S. Guin, M. Sahu, M. Samal, A phenomenological form of the q2 parameter in the Gurson model, International Journal of Pressure Vessels and Piping, 85 (2008) 199-210.

    QR CODE