簡易檢索 / 詳目顯示

研究生: 李佳翰
JIA-HAN LI
論文名稱: 矩陣轉換器永磁同步電動機驅動系統的輸入濾波器及預測型控制器研製
Design and Implementation of Input Filters and Predictive Controllers for Matrix-Converter Based IPMSM Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 劉添華
Tian-Hua Liu
楊勝明
Sheng-Ming Yang
楊士進
Shih-Chin Yang
徐國鎧
Kuo-Kai Shyu
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 154
中文關鍵詞: 輸入濾波器電流諧波抑制矩陣轉換器預測型控制 器永磁同步電動機
外文關鍵詞: input filter, current harmonics elimination, matrix-converter, predictive control, permanent-magnet synchronous motor
相關次數: 點閱:279下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討三相矩陣轉換器永磁同步電動機驅動系統的研製,在輸入側由於雙向功率開關元件的切換,導致輸入電流的波形中含有脈波寬度調變的高頻諧波成分。故本文提出兩種矩陣轉換器永磁同步電動機驅動系統的輸入濾波器的設計方法,加裝方法一濾波器將輸入電流諧波由132.14%降至9.55%,加裝方法二濾波器則降至12.08%。
為了改善驅動系統的動態響應,文中探討速度迴路預測型控制器與電流迴路預測型控制器,提升電動機驅動系統的暫態響應及追蹤能力。文中亦探討速度迴路單步預測型控制器及兩步預測型控制器。使用單步速度預測型控制器將最大超越量由6%降至2%,使用兩步速度預測型控制器將最大超越量降至1%。使用電流預測型控制器將輸出電流諧波由11.9%降至9.3%。
本文使用瑞薩電子所生產的數位訊號處理器SH7237與英特爾所生產的現場可程式化邏輯閘陣列10M16SAU169I7G作為控制核心,配合周邊硬體電路達成驅動控制。相關實驗結果驗證,說明本文所提方法的可行性及正確性。


This thesis proposes the design and implementation methods of input filters and predictive controllers for matrix-converter permanent-magnet synchronous motor based drive systems. Due to the switching of the bidirectional power switches, the three-phase input currents contain obvious pulse-width modulation high-frequency hamonic components. To solve the problem, two design methods of the input filters for the matrix-converter PMSM drive systems are proposed. Method 1 reduces the input current harmonics from 132.14% to 9.55%, method 2 reduces it to 12.08%.
In order to improve the dynamic responses of the drive system, a speed-loop predictive controller and a current-loop predictive current controller are investigated to improve the transient responses and the tracking responses of the drive system. In addition, the thesis also compares a single-step predictive controller and a two-step predictive controller. The maximum overshoot was reduced from 6% to 2% using a one-step speed-loop predictive controller and to 1% using a two-step speed-loop predictive controller. Using a current predictive controller reduces the output current harmonics from 11.9% to 9.3%.
A digital signal processor, type SH7237, manufactured by Renesas Electronics, and an FPGA, type 10M16SAU169I7G, made by Intel are used as the control centers. Experimental results validate the feasibility and correctness of the proposed method.

中文摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 X 符號索引 XI 第一章 緒論 1 1.1背景 1 1.2研究動機 2 1.3文獻回顧 3 1.4研究目的 7 1.5論文大綱 8 第二章 內藏式永磁同步電動機 9 2.1簡介 9 2.2結構與特性 9 2.3 數學模式 13 第三章 矩陣轉換器 21 3.1 簡介 21 3.2 主電路 22 3.3 直接切換法 24 3.4 間接切換法 26 3.5換向電路 35 3.6箝位電路 36 第四章 輸入濾波器設計 38 4.1簡介 38 4.2 數學模式 41 4.3設計方法 46 4.3.1方法一 46 4.3.2方法二 54 第五章 預測型控制器設計 59 5.1簡介 59 5.2速度迴路預測型控制器設計 61 5.3電流迴路預測型控制器設計 72 第六章 系統研製 80 6.1簡介 80 6.2硬體電路 81 6.2.1矩陣轉換器主電路 81 6.2.2輸入濾波器 84 6.2.3閘極驅動電路 84 6.2.4電壓及電流偵測電路 86 6.2.5箝位電路 88 6.2.6數位信號處理器 88 6.2.7現場可程式化邏輯閘陣列 90 6.3軟體程式 91 6.3.1 DSP程式 91 6.3.2 FPGA程式 95 第七章 實測結果 97 7.1簡介 97 7.2 實測 101 第八章 結論與未來研究方向 125 參考文獻 127

[1] S. Kwak, T. Kim, and G. Park, “Phase-redundant-based reliable direct AC/AC converter drive for series hybrid off-highway heavy electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2674-2688, July 2010.
[2] J. Hong, S. Wang, Y. Sun, and H. Cao, “An effective method with copper ring for vibration reduction in permanent magnet brush DC motors,” IEEE Transactions on Magnetics, vol. 54, no. 11, November 2018.
[3] S. B. Ozturk and H. A. Toliyat, “Direct torque and indirect flux control of brushless DC motor,” IEEE Transactions on Mechatronics, vol. 16, no. 2, pp. 351-360, April 2011.
[4] S. Sadr, D. A. Khaburi, and J. Rodriguez, “Predictive slip control for electrical trains,” IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3446-3457, June 2016.
[5] Z. Wang, J. Chen, M. Cheng, and K. T. Chau, “Field-oriented control and direct torque control for paralleled VSIs fed PMSM drives with variable switching frequencies,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2417-2428, March 2016.
[6] X. Wang, M. Reitz, and E. E. Yaz, “Field oriented sliding mode control of surface-mounted permanent magnet AC motors: theory and applications to electrified vehicles,” IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 10343-10356, November 2018.
[7] N. S. M. L. Marinus, C. B. Jacobina, N. Rocha, and E. C. Santos Jr., “AC–DC–AC three-phase converter based on three three-leg converters connected in series,” IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 3171-3181, July/August 2016.
[8] Y. Bak and K. B. Lee, “Constant speed control of a permanent-magnet synchronous motor using a reverse matrix converter under variable generator input conditions,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 1, pp. 315-326, March 2018.
[9] A. Dasgupta and P. Sensarma, “Filter design of direct matrix converter for synchronous applications,” IEEE Transactions on Industry Electronics, vol. 61, no. 12, pp. 6483-6493, December 2014.
[10] M. Huang, X. Wang, P. C. Loh, and F. Blaabjerg “Active damping of LLCL-filter resonance based on LC-trap voltage or current feedback,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2337-2346, March 2016.
[11] J. Liu, C. Gong, Z. Han, and H. Yu “IPMSM model predictive control in flux-weakening operation using an improved algorithm,” IEEE Transactions on Industry Electronics, vol. 65, no. 12, pp. 9378-9387, December 2018.
[12] L. Gyugyi and B.R. Pelly,“Static power frequency changers: theory, performance, and application,“ New York: Wiley, 1976.
[13] A. Alesina and M. G. B. Venturini, “Analysis and design of optimum-amplitude nine-switch direct AC–AC converters,” IEEE Transactions on Industry Applications, vol. 4, no.1, pp. 101-112, January 1989.
[14] L. Huber and D. Borojevic, “Space vector modulated three-phase to three-phase matrix converter with input power factor correction,” IEEE Transactions on Industry Applications, vol. 31, no. 6, pp. 1234-1246, November/December 1995.
[15] J. Rodriguez, “A new control technique for AC-AC converters,” IFAC Proceeding Volumes, vol. 16, no. 16, pp. 203-208, April 1983.
[16] S. Kwak and H. A. Toliyat, “An approach to fault-tolerant three-phase matrix converter drives,” IEEE Transactions on Conversion, vol. 22, no. 4, pp. 855-863, December 2007.
[17] A. Tsoupos and V. Khadkikar, “A novel SVM technique with enhanced output voltage quality for indirect matrix converters,” IEEE Transactions on Industry Electronics, vol. 66, no. 2, pp. 832-841, February 2019.
[18] H. M. Nguyen, H. H. Lee, and T. W. Chun, “Input power factor compensation algorithms using a new direct-SVM method for matrix converter,” IEEE Transactions on Industry Electronics, vol. 58, no. 1, pp. 232-243, January 2011.
[19] M. Hamouda, H. F. Blanchette, and K. Al-Haddad, “Unity power factor operation of ndirect matrix converter tied to unbalanced grid,” IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1095-1107, February 2016.
[20] M. Milanovic, and B. Dobaj, “Unity input displacement factor correction principle for direct AC to AC matrix converters based on modulation strategy,” IEEE Transactions on Circuits and Systems, vol. 47, no. 2, pp. 221-230, February 2000.
[21] R. Vargas, U. Ammann, B. Hudoffsky, J. Rodriguez, and P. Wheeler, “Predictive torque control of an induction machine fed by a matrix converter with reactive input power control,“ IEEE Transactions on Power Electronics, vol. 25, no. 6, pp. 1426-1438, June 2010.
[22] A. Trentin, P. Zanchetta, J. Clare, and P. Wheeler, “Automated optimal design of input filters for direct AC/AC matrix converters,” IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 2811-2823, July 2012.
[23] D. Casadei, J. Clare, L. Empringham, G. Serra, A. Tani, A. Trentin, and P. Wheeler, “Large-signal model for the stability analysis of matrix converters,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 939-950, April 2007.
[24] D. Orser, and N. ohan,” A Matrix converter ride-through configuration using input filter capacitors as an energy exchange mechanism,” IEEE Transactions on Industrial Electronics, vol. 30, no.8, pp. 4377-4385, August 2015.
[25] M. Rivera, J. Rodriguez, B. Wu, J. R. Espinoza, and C. A. Rojas, “Current control for an indirect matrix converter with filter resonance mitigation,” IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 71-78, January 2012.
[26] A. Dasgupta and P. Sensarma, “Filter design of direct matrix converter for synchronous applications,” IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6483-6493, December 2014.
[27] D. Xiao and M. F. Rahman, “Sensorless direct torque and flux controlled IPM synchronous machine fed by matrix converter over a wide speed range,” IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 1855-1867, November 2013.
[28] A. K. Junejo, W. Xu, C. Mu, M. M. Ismail, and Y. Liu, “Adaptive speed control of PMSM drive system based a new sliding-mode reaching law,” IEEE Transactions on Power Electronics, vol. 35, no. 11, pp. 12110-12121, November 2020.
[29] Z. Mynar, L. Vesely, and P. Vaclavek, “PMSM model predictive control with field-weakening implementation,” IEEE Transactions on Power Electronics, vol. 63, no. 8, pp. 5156-5166, August 2016.
[30] P. G. Carlet, F. Tinazzi, S. Bolognani, and M. Zigliotto, “An effective model-free predictive current control for synchronous reluctance motor drives,” IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 3781-3790, July/August 2019.
[31] S. Liu, B. Ge, Y. Liu, H. Abu-Rub, R. S. Balog, and H. Sun, “Modeling, analysis, and parameters design of LC-filter-integrated quasi-Z-source indirect matrix converter,” IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7544-7555, November 2016.
[32] M. Liserre, F. Blaabjerg, and S. Hansen, “Design and control of an LCL-filter-based three-phase active rectifier,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1281-1291, September/ October 2005.
[33] Q. Liu, L. Peng, Y. Kang, S. Tang, D. Wu, and Y. Qi, “A novel design and optimization method of an LCL filter for a shunt active power filter,” IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 4000-4010, August 2014.
[34] A. K. Sahoo, K. Basu, and N. Mohan, “Systematic input filter design of matrix converter by analytical estimation of RMS current ripple,” IEEE Transactions on Industrial Electronics, vol. 62, no. 1, pp. 132-143, January 2016.
[35] K. Koiwa and J. Itoh, “A maximum power density design method for nine switches matrix converter using SiC-MOSFET,” IEEE Transactions on Industrial Electronics, vol. 31, no. 2, pp. 1189-1202, February 2016.
[36] X. Wang, H. Lin, B. Feng, and Y. Lyu, “Damping of input LC filter resonance based on virtual resistor for matrix converter,” IEEE Energy Conversion Congress and Exposition, September 2012.

QR CODE