簡易檢索 / 詳目顯示

研究生: 黃泰榮
Tai-Rong Huang
論文名稱: 積層製造材料與噴頭壓電陶瓷之異向性力學材料常數量測
Anisotropic Material Constants Measuring of Additive Manufactured Materials and Piezoelectric Ceramics
指導教授: 黃育熙
Yu-Hsi Huang
口試委員: 周振嘉
Chen-Chia Chou
洪光民
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 301
中文關鍵詞: 積層製造異向性力學壓電噴頭壓電材料振動特性共振頻率共振法
外文關鍵詞: static and dynamic tests, resonance method.
相關次數: 點閱:326下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用熱融擠製成型的3D列印機分別列印出三種不同材料排向之試片,利用靜態與動態的材料試驗方法量測三個方向的材料常數,其中靜態試驗是以簡支梁的邊界條件支撐試片兩端並在中間掛置砝碼量測其變形量,再以變形產生的位移量與力量之間的關係計算出楊氏係數,動態試驗則是將試片以懸臂梁的單邊固定邊界條件,使用鋼珠落擊方式撞擊懸臂梁,並在懸臂梁上貼上壓電薄膜與使用雷射都卜勒振動儀兩種量測方式獲得暫態訊號,將所獲得之暫態訊號使用快速傅立葉轉換計算共振頻率,最後利用白努利-尤拉梁理論,使用基頻反算楊氏係數與剪力彈性係數進而求得蒲松氏比。經由上述實驗便可獲得不同排向的積層材料之完整的異向性材料常數。
    另一研究則為開發光固化式3D列印機之壓電噴頭,故分析壓電材料的異向性力學與耦合電學之材料常數,先以逆向工程方式分解市售壓電噴頭的結構,並分析其壓電材料的成份,接著採購三家不同廠商的壓電材料預計應用於壓電噴頭的製作,研究中使用IEEE提出之共振法與數學式運算,獲得壓電材料完整的異向性材料常數,將三種測得的壓電陶瓷材料的材料常數比較廠商給予或文獻提供的數值,利用電子斑點干涉術與阻抗分析儀對其共振頻率與模態振形進行量測,再與有限元素數值分析代入的不同常數所獲得的結果相互比較驗證,本研究證實了量測所獲得的材料常數具有優良的可靠性。


    This study used on the fused deposition modeling of 3D printer to process the specimens of three different directions. The specimens with different additive manufacture were measured their mechanical properties by static and the dynamic tests. The specimens of static test under the simply-supported beam boundary condition load the weight in the middle of specimens so that the Young's modulus were determined by measuring the deformation of strength. The specimens of dynamic test were achieved by the boundary condition of cantilever beam. Using a steel ball to strike the cantilever beam, the transient signal were obtained by two measured methods. Through the piezoelectric film bounded on the cantilever beam, the dynamic strain were determined by oscillator connecting with charge amplifier. Through the laser Doppler vibrometer (LDV) to measure the non-contact optical signals, the velocity were determined by the LDV built-in modulator. Using Fast Fourier Transform (FFT) to transfer the transient signals in time domain as frequency domain, the resonant frequency can be indicated by the maxima of frequency spectrums. Finally, the Young's modulus, Poisson’s ratio, and shear modulus can be calculated according to the theory of Bernoulli-Euler beam. Finally, the orthotropic material constants of the additive manufacturing specimen can be built by those static and dynamic tests.
    The material constants of piezoelectric ceramics, which are developed on the piezoelectric print head development of 3D stereolithographic printer, are determined by resonance method according to IEEE standard. First, the commercial piezoelectric print head was dissemble in order to realize its components of the structure. Because dynamic characteristics of piezoelectric device need to establish by finite element calculation, the anisotropic material constants of piezoelectric materials were determined using in design of piezoelectric print head. The resonant frequencies obtained from FEM results, which were calculated by importing the anisotropic material constants of piezoelectric ceramics, were verified by two kinds of experimental measurements. The resonant frequencies and mode shapes both of out-of-plane and in-plane vibrations were determined by electronic speckle pattern interferometry (ESPI) and the in-plane resonant frequencies were also measured by impedance analyzer. The vibration characteristics of piezoelectric ceramics are shown in good consistence between FEM results and experimental measurements.

    中文摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XVIII 第一章 緒論 1 1.1研究背景、動機與目的 1 1.2文獻回顧 4 1.3內容介紹 7 第二章 基本理論介紹 9 2.1複合材料簡介 9 2.2異向性力學理論 10 2.2.1非等向性材料(Anisotropic Material) 10 2.2.2正交性材料(Orthotropic Material) 11 2.2.3橫向等向性材料(Transversely Isotropic Material) 14 2.2.4等向性材料(Isotropic Material) 17 2.3懸臂梁振動理論 19 2.3.1懸臂梁彎曲模態(Bending Mode)與側向模態(Lateral Mode) 19 2.3.2懸臂梁扭轉模態(Torsional Mode) 21 2.3.3懸臂梁軸向模態(Longitudinal mode) 22 2.4簡支梁撓度理論 24 2.5壓電材料非等向性材料常數力學特性 26 2.5.1基本壓電理論 26 2.5.2共振法 29 第三章 實驗儀器設備 40 3.1 3D列印機簡介 40 3.1.1熱融擠製成型(Fused Deposition Modeling,FDM) 40 3.1.2光固化立體成型(Stereolithography,SLA) 40 3.2電荷放大器(Charge Amplifier) 41 3.3雷射都卜勒振動儀(Laser Doppler Vibrometer,LDV) 41 3.4阻抗分析儀(Impedance Analyzer) 42 3.5電子斑點干涉術(Electronic Speckle Pattern Interferometry,ESPI) 47 3.5.1面外振動量測 48 3.5.2面內振動量測 51 3.6聚偏二氟乙烯(PVDF)薄膜感測器 52 第四章 3D列印之材料異向性特性研究 61 4.1異向性性質之假設 61 4.2動態試驗量測 61 4.2.1 x方向堆疊之材料常數量測 62 4.2.2 y方向堆疊之材料常數量測 65 4.2.3 z方向堆疊之材料常數量測 68 4.2.4動態試驗綜合討論 70 4.3靜態試驗量測 71 4.3.1 x方向堆疊之材料常數量測 71 4.3.2 y方向堆疊之材料常數量測 71 4.3.3 z方向堆疊之材料常數量測 71 4.3.4靜態試驗綜合討論 72 4.4靜態與動態試驗綜合討論 72 4.4.1 x方向試片之異向性數值分析 73 4.4.2 y方向試片之異向性數值分析 73 4.4.3 z方向試片之異向性數值分析 73 第五章 壓電噴頭之壓電材料解析與量測 158 5.1壓電噴頭之拆解與分析 158 5.2壓電材料常數量測 159 5.2.1壓電材料之選購與切割 159 5.2.2 APC-855之材料常數量測 160 5.2.3 FUJI C-2之材料常數量測 162 5.2.4寰辰 MD之材料常數量測 165 5.3壓電材料之振動特性及模擬驗證 168 5.3.1實驗架設、方法與數值計算 168 5.3.2實驗量測與數值計算結果 169 第六章 結論與展望 280 6.1本文成果 280 6.2未來展望 283 參考文獻 288 附錄 293 A. 熱融擠製成型列印機規格 293 B. 2775AM4 Signal Conditioner規格 294 C. 雷射都卜勒振動儀規格 296 D. PVDF薄膜感測器規格 297 E. ABS材料規格表 299 F. G-code編碼解釋(x方向-70%擠料量) 300

    [1] Li, L., Sun, Q., Bellehumeur, C., and Gu, P., Composite Modeling and Analysis for Fabrication of FDM Prototypes with Locally Controlled Properties. Journal of Manufacturing Processes, 2002. 4(2): p. 129-141.
    [2] Sung-Hoon Ahn, M.M., Dan Odell, Shad Roundy and Paul K. Wright, Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 2002. 8(4): p. 248-257.
    [3] Lee, C.S., Kim, S. G., Kim, H. J., and Ahn, S. H., Measurement of anisotropic compressive strength of rapid prototyping parts. Journal of Materials Processing Technology, 2007. 187–188(0): p. 627-630.
    [4] Scholz, M.S., B.W. Drinkwater, and R.S. Trask, Ultrasonic assembly of anisotropic short fibre reinforced composites. Ultrasonics, 2014. 54(4): p. 1015-1019.
    [5] Vallittu, P.K., High-aspect ratio fillers: Fiber-reinforced composites and their anisotropic properties. Dental Materials, 2015. 31(1): p. 1-7.
    [6] Tymrak, B.M., M. Kreiger, and J.M. Pearce, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design, 2014. 58(0): p. 242-246.
    [7] Mason, W.P. and H. Jaffe, Methods for Measuring Piezoelectric, Elastic, and Dielectric Coefficients of Crystals and Ceramics. Proceedings of the IRE, 1954. 42(6): p. 921-930.
    [8] IRE Standards on Piezoelectric Crystals: Measurements of Piezoelectric Ceramics, 1961. Proceedings of the IRE, 1961. 49(7): p. 1161-1169.
    [9] H. JAFFE, et al., IEEE Standard on Piezoelectricity. ANSI/IEEE Std 176-1987, 1988: p. 0_1.
    [10] Wang, J.F., Chen, C., Zhang, L., and Qin, Z. K., Determination of the dielectric, piezoelectric, and elastic constants of crystals in class 32. Physical Review B, 1989. 39(17): p. 12888-12890.
    [11] Wenwu Cao, S.Z., and Bei Jiang, Analysis of shear modes in a piezoelectric vibrator. Journal of Applied Physics, 1998. 83.
    [12] Kim, Y.M., S. H., Lee, H. Y., and Roh, Y. R., Measurement of all the material properties of PMN-PT single crystals grown by the solid-state-crystal-growth (SSCG) method. in Ultrasonics, 2003 IEEE Symposium on. 2003.
    [13] 簡偉勝, 應用混合法量測壓電材料常數並探討其動態特性與溫度效應. 國立臺灣大學機械工程研究所碩士論文, 2007年6月.
    [14] 白廷文, 微型鑽針之靜態與動態應力分析. 國立臺灣科技大學機械工程系碩士論文, 103年7月.
    [15] 鄭明昌, 碳纖複合材料吸水性質及應變量測方法研究. 國立雲林科技大學工程科技研究所博士論文, 2005年12月.
    [16] 劉泓嶔, PVDF感測器應用於結構系統之動態量測能力探討. 國立臺灣大學機械工程研究所碩士論文, 100年7月.
    [17] 潘善盈, 應用PVDF感測器於懸臂梁之主動抑振與揚聲器音壓之控制. 國立臺灣大學機械工程研究所碩士論文, 98年7月.
    [18] Andrew Pytel, J.K.著. and 余念一 譯, 材料力學. 高立圖書有限公司, 2013年.
    [19] Meitzler, A.H., H.M. O'Bryan, Jr., and H.F. Tiersten, Definition and Measurement of Radial Mode Coupling Factors in Piezoelectric Ceramic Materials with Large Variations in Poisson's Ratio. Sonics and Ultrasonics, IEEE Transactions on, 1973. 20(3): p. 233-239.
    [20] 吳朗, 電子陶瓷-壓電. 全欣圖書公司, 83年12月.
    [21] Zhang, S., Alberta, E. F., Eitel, Richard E., Randall, Clive A., and Shrout, Thomas R., Elastic, piezoelectric, and dielectric characterization of modified BiScO/sub 3/-PbTiO/sub 3/ ceramics. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, 2005. 52(11): p. 2131-2139.
    [22] 池田拓郎著 and 陳世春譯, 基本壓電材料學. 復漢出版社, 74年7月.
    [23] 周卓明, 壓電力學. 全華科技圖書股份有限公司, 92年11月.
    [24] Wang, W.-C., C.-H. Hwang, and S.-Y. Lin, Vibration measurement by the time-averaged electronic speckle pattern interferometry methods. Applied Optics, 1996. 35(22): p. 4502-4509.
    [25] Wykes, C., USE OF ELECTRONIC SPECKLE PATTERN INTERFEROMETRY (ESPI) IN THE MEASUREMENT OF STATIC AND DYNAMIC SURFACE DISPLACEMENTS. Optical Engineering, 1982. 21(3): p. 400-406.
    [26] Bent, A.A. and N.W. Hagood, Piezoelectric fiber composites with interdigitated electrodes. Journal of Intelligent Material Systems and Structures, 1997. 8(11): p. 903-919.
    [27] Signal conditioner model 2775AM4. ENDEVCO Corporation, 2008.
    [28] PhotonicsEncyclopedia, R., Acousto-optic Modulators. http://www.rp-photonics.com/acousto_optic_modulators.html.
    [29] Polytec, PDV-100 Vibrometer Education Kit.
    [30] 黃智麟, 力學與電學耦合問題之含裂縫壓電陶瓷板動態特性研究與實驗量測. 國立臺灣大學機械工程研究所碩士論文, 94年6月.
    [31] McMahon, G.W., Measurement of Poisson's Ratio in Poled Ferroelectric Ceramics. Ultrasonics Engineering, IEEE Transactions on, 1963. 10(2): p. 102-103.
    [32] IEEE Standard Definitions and Methods of Measurement for Piezoelectric Vibrators. IEEE Std No.177, 1966: p. 1.
    [33] Maeda, R., Tsaur, J. J., Lee, S. H., and Ichiki, M., Piezoelectric Microactuator Devices. Journal of Electroceramics, 2004. 12(1-2): p. 89-100.
    [34] Park, J.-M., Joung-Man, Kong, Jin-Woo, Kim, Dae-Sik, and Yoon, Dong-Jin, Nondestructive damage detection and interfacial evaluation of single-fibers/epoxy composites using PZT, PVDF and P(VDF-TrFE) copolymer sensors. Composites Science and Technology, 2005. 65(2): p. 241-256.
    [35] Ma, C.C., Y.H. Huang, and S.Y. Pan, Investigation of the transient behavior of a cantilever beam using PVDF sensors. Sensors, 2012. 12(2): p. 2088-2117.
    [36] Campoli, G., et al., Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Materials & Design, 2013. 49(0): p. 957-965.
    [37] Chuang, K.C., Lin, S. H., Ma, C. C., and Wu, R. H., Application of a fiber bragg grating-based sensing system on investigating dynamic behaviors of a cantilever beam under impact or moving mass loadings. IEEE Sensors Journal, 2013. 13(1): p. 389-399.
    [38] Amin Yavari, S., Ahmadi, S. M., van der Stok, J., Wauthle, R., Riemslag, A. C., Janssen, M., Schrooten, J., Weinans, H., and Zadpoor, A. A., Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2014. 36(0): p. 109-119.
    [39] 蔡富吉 and 蔡坤哲, 3D印表機自造全書. 碁峰出版社, 2014年4月.
    [40] Saada, A.S., Elasticity: Theory and Applications. J. ROSS PUBLISHING, Second Edition, Revised & Updated.
    [41] 許明發, 柯哲豪, 劉顯光, and 郭文雄, 複合材料入門. 中華民國尖端材料科技協會, 94年8月.
    [42] Rao, S.S., Vibration of Continuous Systems. JOHN WILEY & SONS, INC.
    [43] 聲光調變器工作原理. http://www.tnu.edu.tw/ee/upimages/file/Std-97/4007/%E7%AC%AC%E4%BA%8C%E7%AB%A0%20%20%20%E8%81%B2%E5%85%89%E8%AA%BF%E8%AE%8A%E5%99%A8%E5%B7%A5%E4%BD%9C%E5%8E%9F%E7%90%86.htm.
    [44] 侯炫竹, 雙向驅動壓電雙層圓盤應用於不同幫浦結構之固液耦合震動特性與流率之量測. 國立臺灣科技大學機械工程系碩士論文, 103年7月.

    QR CODE