簡易檢索 / 詳目顯示

研究生: 李坤泓
Kun-Hung Li
論文名稱: 基於黏著劑噴印技術的多噴頭3D模具列印系統研究
Study of a Binder Jetting Based Mold 3D Printing System by using Multiple Piezoelectric Heads
指導教授: 蔡明忠
Ming-Jong Tsai
口試委員: 蔡明忠
汪家昌
鄭逸琳
郭永麟
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 90
中文關鍵詞: 積層製造黏著劑噴印壓電波型砂模強度
外文關鍵詞: additive manufacturing, binder jetting, piezoelectric waveform, sand mold strength
相關次數: 點閱:455下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前要快速及量產製作大型工件,皆須藉由模具來製造,而最常見到製作模具的方法則為砂模鑄造。傳統製作模具皆是藉由木模進行製作,除了成本較高,以及生產的模具複雜度較低之外,且砂模與砂心由於強度需求不同,因此必須分開設計及製作,造成模具開發上的時間增加。因此本研究研發出一套以多壓電噴頭及黏著劑噴印技術之積層製造系統,使用商用矽砂與呋喃樹酯材料。導入灰階與波型設計方法,可同時印製出不同強度需求的砂模如砂心,最後以熔融金屬液澆鑄於砂模進行驗證。
    本系統藉由PC-Based控制系統,進行多壓電噴頭控制、三軸向控制、供墨模組以及鋪層機構的整合,人機介面則是利用C#進行撰寫。壓電噴頭則是採用八排交錯且共高達1024個噴孔,可印製出400DPI解析度的圖案。並藉由三個壓電噴頭拼接,有效噴印範圍最大達到長280 mm、寬194 mm、高200 mm,最小層厚為0.3 mm,列印能力可達到3.91 L/hr。在印製不同黏結強度的模具部分,係設計一套灰階調整系統,藉由調整匯入圖檔的灰階度,以及設計壓電噴頭的波型控制黏著劑噴印墨量,來達到黏結強度差異性。並藉由壓力測試,量測印製出的模具黏結強度,來驗證噴印墨量與模具黏結強度關係。同時參考鑄造丙級證照之鑄件,將模具設計成上、下兩模,並以本系統印製出來,進行合模完成後,利用A356鑄鋁成功的進行澆鑄,經冷卻固化完成拆模後可獲得完整鑄件成型。

    關鍵字:積層製造、黏著劑噴印、壓電波形、砂模強度。


    Recently, it is necessary to manufacture larger scale parts quickly and mass-produced by molds. The most common method for making molds is sand casting. The traditional process method applied the wooden mold to make the sand mold. However, the sand molds and cores have different strength requirements which are restricted to the part’s complexity. It costs highly, and must be designed and manufactured separately. It results in longer develop time. Therefore, the purpose of this study is to setup a Binder-Jetting (BJ)-based additive manufacturing system with multiple piezoelectric heads by using commercial sand and furan resin. The system can print sand molds with different strength requirements such as sand cores by employing grey and waveform design methods simultaneously. Finally, some casted parts were obtained from the printed sand molds with casting molten metal.
    The developed system utilizes a PC-Based controller to integrate multiple piezoelectric heads, motion control, continuous ink supply module, paving mechanism, and the human-machine interface which was written by C#. The used piezoelectric head has a total of 1024 nozzles in eight rows. The resolution of 400 dpi can be obtained by using all rows. By using width combination of three piezoelectric heads, the effective printing range can be up to 280 mm long, 194 mm wide, 200 mm high, with a minimum layer thickness of 0.3 mm and a printing capacity of 3.91 L/hr. The molds can be printed under different bonding strengths by using a gray scale pattern to control the amount of printed ink by the piezoelectric nozzle with a corresponding waveform design. Through the pressure test, one can measure the bond strength of the printed mold to verify the relationship between the amount of sprayed ink and the bond strength of the mold. At the same time, referring to the required part of the casting grade C license, the mold is designed into upper and lower molds, and printed by this system. After the molds were assembled, the casting part of the A356 cast aluminum is successfully achieved after the cooling and solidification process.

    Keywords: additive manufacturing, binder jetting, piezoelectric waveform, sand mold strength.

    目錄 中文摘要 I Abstract IV 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 研究方法與步驟 4 1.4 本文架構 5 第二章 相關文獻回顧與技術探討 6 2.1 鑄造模具積層製造技術發展 6 2.1.1 薄片層疊技術(Sheet Laminated) 8 2.1.2 光聚合固化技術(Vat Photopolymerization) 9 2.1.3 材料擠製成型(Material Extrusion) 10 2.1.4 黏著劑噴印技術(Binder Jetting) 11 2.2 鑄造與製模技術原理 12 2.2.1 傳統砂模鑄造製模方法 13 2.2.2 傳統製模與3D列印製模之比較 14 2.2.3 積層製造技術應用於砂模鑄造之相關文獻 15 2.3 壓電波型設計 17 第三章 黏著劑噴印系統架構 19 3.1 開發系統架構 19 3.2 軸向運動控制系統 21 3.3 壓電噴印系統 25 3.3.1 噴頭控制卡(Print Control Card, PCC) 26 3.3.2 噴頭驅動卡(Head Drive Card, HDC) 26 3.3.3 壓電噴頭 27 3.4 供墨系統 28 3.5 鋪砂裝置 32 3.5.1 落砂滾輪轉速 34 3.5.2 鋪砂機構行走速度 35 第四章 控制系統架構 38 4.1 壓電噴頭噴印技術 38 4.1.1 圖檔噴印讀取模式 38 4.1.2 噴印圖片相位 39 4.1.3 噴印定位參數 39 4.1.4 圖檔資料處理 41 4.2 多壓電噴頭拼接規劃 42 4.2.1 X-offset參數設定 43 4.2.2 Y-offset參數設定 43 4.2.3 Stitch width參數設定 44 4.2.4 Orientation參數設定 44 4.2.5 多壓電噴頭拼接參數設定 45 4.2.6 三壓電噴頭實際拼接設定 46 4.3 噴印與鋪層路徑規劃 50 4.4 整合人機介面 52 4.4.1 噴印控制連線及監控 53 4.4.2 三大單元頁面 54 4.5 灰階列印控制 58 4.5.1 噴印墨量設計 58 4.5.2 圖檔灰階化設計 59 第五章 研究成果 61 5.1 墨量與模具特性之比較 61 5.1.1 模具密度 63 5.1.2 模具黏結強度 64 5.2 模具列印與澆鑄成果 66 第六章 結論與未來研究方向 73 6.1 結論 73 6.2 未來研究方向 74 參考文獻 75

    [1] R. Bogue, “3D printing: the dawn of a new era in manufacturing?” Assembly Automation, 2013. 33(4): pp. 307-311.
    [2] C. Fort Collins and W. Associates, Wohlers report 2003: rapid prototyping, tooling & manufacturing state of the industry annual worldwide progress report. 2003: Wohlers associates.
    [3] D. Bak, “Rapid prototyping or rapid production? 3D printing processes move industry towards the latter.” Assembly Automation, 2003. 23(4): pp. 340-345.
    [4] C. Fort Collins and W. Associates, Wohlers Report 2018: Additive Manufacturing and 3D Printing State of the Industry : Annual Worldwide Progress Report. 2018: Wohlers associates.
    [5] Siemens. Additive manufacturing: Facts and forecasts. [cited 2018 Jun 25];Available from: https://www.siemens.com/innovation/en/home/pictures-of-the-future/industry-and-automation/Additive-manufacturing-facts-and-forecasts.html.
    [6] Deloitte, Estimated growth of the AM market. in 3D Printing Market OUTLOOK, 2016.
    [7] 張雅琪,「3D列印在鑄造砂模之應用潛力分析」,經濟部技術處,2015。
    [8] M. Upadhyay, T. Sivarup an, and M. El Mansori, “3D printing for rapid sand casting—A review.” Journal of Manufacturing Processes, 2017. 29: p. 211-220.
    [9] Z.X. Low, Y.T. Chua, B.M. Ray, D. Mattia, I.S. Metcalfe, and D.A. Patterson, “Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques.” Journal of Membrane Science, 2017. 523: p. 596-613.
    [10] ExOne. A Case Study in Optimizing Casting Design Using 3D Printing:2017 [cited 2018 Jun 25]; Available from: https://www.afsinc.org/metalcasting-tv/webinar-case-study-optimizing-casting-design-using-3-d-printing.
    [11] P. Hackney and R. Wooldridge, “Optimization of Additive Manufactured Sand Printed Mould Material for Aluminium Castings.” Procedia Manufacturing, 2017. 11: p. 457-465.
    [12] 吳慶財、郭信宏(民106),「應用3D列印技術於砂模模具之研究」。機械新刊,11,50-60。
    [13] 張晉昌,鑄造學,全華圖書股份有限公司,pp.1-1、pp.3-3、pp.5-1,2008。
    [14] N. Guo and M.C. Leu, “Additive manufacturing: technology, applications and research needs.” Frontiers of Mechanical Engineering, 2013. 8(3): p. 215-243.
    [15] ASTM, F2792-12 Standard terminology for additive manufacturing technologies. ASTM International, 2012.
    [16] M. Stankiewicz, G. Budzik, M. Patrzałek, M. Wieczorowski, M. Grzelka, H. Matysiak, and Slota, “The scope of application of incremental Rapid Prototyping methods in foundry engineering.” Archives of Foundry Engineering, 2010. 10(1), 405-410.
    [17] Seven Types of Additive Manufacturing and Hybrid, According to ASTM F2792 Standards. Diagram created by Hybrid Manufacturing Technologies. [cited 2018 Jun 25]; Available from: http://www.hybridmanutech.com/uploads/2/3/6/9/23690678/7_families_of_3d_printing_by_hybrid_v9_2pps.pdf.
    [18] 鄭正元、江卓培、林宗翰、林榮信、蘇威年、汪家昌、蔡明忠、賴維祥、鄭逸琳、洪基彬、鄭中緯、宋宜駿、陳怡文、賴信吉、吳貞興、許郁淞、陳宇恩,3D列印-積層製造技術與應用,全華圖書股份有限公司(06339),2017。
    [19] Additive manufacturing: Laminated Object Manufacturing (LOM). [cited 2018 Jun 25]; Available from: https://scanandmake.com/additive-manufacturing.
    [20] 3D printing: Stereolithography (SLA) Technology. [cited 2018 Jun 25]; Available from: http://www.3dprinting.lighting/3d-printing-technologies/stereolithography/.
    [21] CUSTOMPART.NET: Fused Deposition Modeling (FDM). [cited 2018 Jun 25]; Available from: http://www.custompartnet.com/wu/fused-deposition-modeling.
    [22] Additively: Binder Jetting (BJ). [cited 2018 Jun 25]; Available from: https://www.additively.com/en/learn-about/binder-jetting.
    [23] 第三章-鑄造。 [cited 2018 Jun 25]; Available from: http://www.khvs.tc.edu.tw/page/2/04/ME_digitalbook/Manufacture%2003.pdf.
    [24] R.G. Bruce, M.M. Tomovic, J.E. Neely, and R.R. Kibbe, Modern materials and manufacturing processes. 3nd ed., Pearson Prentice Hall, 2004.
    [25] 第四章 傳統鑄造方法Foundry Process. [cited 2018 Jun 25]; Available from: http://www.taiwan921.lib.ntu.edu.tw/mypdf/mf04.pdf.
    [26] 鑄造產業轉型升級與發展. [cited 2018 Jun 25]; Available from: https://www.taiwanjobs.gov.tw/internet/index/docDetail_frame.aspx?uid=1590&pid=230&docid=28381&nohotkey=Y.
    [27] 陳宇恩,以積層製造技術實現砂模3D列印之系統控制研發,碩士論文, 自動化及控制研究所. 2016, 國立臺灣科技大學。
    [28] N. Hawaldar and J. Zhang, “A comparative study of fabrication of sand casting mold using additive manufacturing and conventional process.” The International Journal of Advanced Manufacturing Technology, 2018. 97(1-4): p. 1037-1045.
    [29] N. Coniglio, T. Sivarupan, and M. El Mansori, “Investigation of process parameter effect on anisotropic properties of 3D printed sand molds.” The International Journal of Advanced Manufacturing Technology, 2018. 94(5): p. 2175-2185.
    [30] S. Mitra,A. Rodríguez de Castro, and M. El Mansori, “The effect of ageing process on three-point bending strength and permeability of 3D printed sand molds.” The International Journal of Advanced Manufacturing Technology, 2018. 97(1): p. 1241-1251.
    [31] H. Miyanaji, N. Momenzadeh, and L. Yang, “Effect of printing speed on quality of printed parts in Binder Jetting Process.” Additive Manufacturing, 2018. 20: p. 1-10.
    [32] H. Miyanaji, S. Zhang, and L. Yang, “A new physics-based model for equilibrium saturation determination in binder jetting additive manufacturing process.” International Journal of Machine Tools and Manufacture, 2018. 124: p. 1-11.
    [33] H.P. Le, “Progress and trends in ink-jet printing technology.” Journal of Imaging Science and Technology, 1998. 42(1): p. 49-62.
    [34] Co., R.I., GEN5 JETPACK INTEGRATION GUIDE.
    [35] Advantech, PCI-1245 & PCI-1265 User Manual.
    [36] Advantech, ADAM-3956 Terminal board startup manual.
    [37] Panasonic, MINAS A5Ⅱ/A5 series - Panasonic Industrial Devices.
    [38] YZ昱展科技,YKM2610-04A 二相步進馬達說明書。
    [39] YZ昱展科技, R138螺桿滑台基本規格。[cited 2018 Jun 25]; Available from: http://www.m-pro.com.tw/product.php?fid=3&sid=22&tid=23&did=60&p_no=45.
    [40] YZ昱展科技, P065 電動缸基本規格。 [cited 2018 Jun 25]; Available from: http://www.m-pro.com.tw/product.php?fid=3&sid=36&tid=50&did=72&p_no=145.
    [41] Meteor Inkjet Ltd PCC-E Print Controller Card User Manual.
    [42] Meteor Inkjet Ltd HDC-SF Head Driver Card Assembly User Manual.
    [43] Fujifilm, StarFireTM SG1024/C Printheads Product Manual.
    [44] P. Nandwana, A.M. Elliott, D. Siddel, A. Merriman, W.H. Peter, and S.S. Babu, “Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges.” Current Opinion in Solid State and Materials Science, 2017. 21(4): p. 207-218.
    [45] 余立華,快速成形自動送粉鋪粉裝置,C.N. Patent No.101885062B, 2010。
    [46] Co., R.I., Meteor Software User Manual.
    [47] 泛揚國際有限公司. 自硬性型砂抗壓強度試驗機. [cited 2018 Jun 25]; Available from: http://alkemt.com/Fproducts_show.asp?productid=756.

    QR CODE