簡易檢索 / 詳目顯示

研究生: 陳昱勝
Yu-Sheng Chen
論文名稱: 使用微米/奈米二氧化矽製備具超疏水、抗污及防蝕性能之可循環高分子塗層
Micro/Nano silica microstructured sustainable polymer coating with superhydrophobic, antifouling and anticorrosion properties
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 蔡協致
何明樺
莊高樹
陳玉暄
林宣因
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 69
中文關鍵詞: 超疏水性表面可循環高分子微結構接觸角粗糙度極化曲線交流阻抗
外文關鍵詞: Superhydrophobic surface, Sustainable polymer, Microstructure, Contact angle, Roughness, Rolarization curve, AC impedance
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超疏水性塗料常用於表面抗汙及防蝕,其性能主要受表面粗糙結構和塗料之表面能控制。考量到目前的超疏水塗層製備法通常較複雜,且成本高,所以我們使用市售的微米與奈米粒子,不進行改質並結合低表面能、穩定且疏水的可循環性高分子直接在材料表面製備出粗糙孔洞結構。
    透過一系列的實驗測試,我們得到了兩組不同尺寸的二氧化矽配方,並結合具有疏水、穩定且疏水的可循環性市售高分子和亞甲基二苯基二異氰酸酯(Methylene diphenyl diisocyanate,MDI)作為粒子的接著劑並提供低表面能的表面。利用掃描式電子顯微鏡和原子力顯微鏡可分析它們的微結構及其塗料粗糙度;它們在多項測試中有不錯的表現,像是在自潔淨測試中證明其的抗汙能力;在超過30次砂紙磨耗與3000滴水衝擊下,此塗層都能保持接觸角在150°以上,證明其耐受性良好;在抗垢測試證明這些塗層能減少垢石的產生;利用NaOH、HNO3和NaCl,來模擬酸鹼鹽的環境,驗證其化學抗性,另外我們也利用塗層表面之電化學極化曲線與交流阻抗分析來了解其抗蝕能力。
    從實驗結果可知我們的塗料在能源領域有廣泛的應用。舉例來說,不錯的抗結垢和耐熱性能也能應用在火力發電的熱水鍋爐,避免水垢的產生降低其效能;塗料對金屬的抗海水腐蝕能力,能降低離岸風機基座的維護成本等。


    Surface anti-fouling and corrosion resistance are enhanced by our superhydrophobic coatings, which are influenced by microstructure, roughness, and surface energy. We combine unmodified micron and nanoscale particles with a sustainable polymer to create a porous structure on surfaces to simplify preparation and reduce costs.
    Experiments yielded highly hydrophobic coatings, the microstructure and roughness of which can be examined using SEM and AFM. In self-cleaning tests, they demonstrated outstanding performance, including excellent anti-fouling capabilities. Despite being subjected to over 30 cycles of sandpaper abrasion and 3000 water droplet impacts, the coatings-maintained contact angles greater than 150°, demonstrating remarkable durability. Anti-scaling tests demonstrated their ability to reduce the formation of scale. Chemical resistance was tested using NaOH, HNO3, and NaCl, which were used to simulate acidic, alkaline, and salt environments. Electrochemical polarization curves and AC impedance analysis were used to assess corrosion resistance.
    Our experimental results show that these coatings have a wide range of applications in the energy sector. They improve solar panel efficiency, for example, by having self-cleaning properties. Their anti-scaling and heat-resistant performance benefits thermal power generation hot water boilers by preventing scale formation and efficiency loss. Furthermore, the coatings' resistance to seawater corrosion lowers the cost of maintenance for offshore wind turbine foundations.

    誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 蓮花效應(Lotus effect) 3 2-2 表面能理論 5 2-2-1 楊氏 (Young)方程式 6 2-2-2 溫佐(Wenzel)方程式 6 2-2-3 卡西-巴斯特(Cassie and Baxter)方程式 7 2-2-4 介於溫佐和卡西-巴斯特兩狀態之間的過渡狀態 8 2-3 抗污塗料 9 2-4 粒子微結構塗層 10 2-5 腐蝕與防蝕 11 2-5-1 腐蝕原理及型態 11 2-5-2 防蝕塗料 13 2-5-3 陰極防蝕 14 第三章 實驗說明 15 3-1 實驗藥品和規劃 15 3-2 分析儀器與設備 18 3-2-1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 18 3-2-2 原子顯微儀(Atomic force microscope, AFM) 18 3-2-3 紅外光譜儀 (Infrared Spectroscopy) 20 3-2-4 接觸角分析儀 (Contact angle measure analyzer) 21 3-2-5 X光繞射儀(X-ray Diffractometer, XRD) 22 3-2-6 恆電位儀(Potentiostat) 23 3-3 實驗方法 24 3-3-1超疏水塗層的製備 24 3-3-2水滴衝擊測試 25 3-3-3砂紙磨耗測試 25 3-3-4抗結垢試驗A 26 3-3-5抗結垢試驗B 26 3-3-6電化學極化曲線 26 3-3-7電化學交流阻抗 27 第四章 結果與討論 28 4-1塗層表面特性 28 4-1-1塗層的表面潤濕性 28 4-1-2 OM分析 29 4-1-3 IR分析 30 4-1-4 SEM分析 31 4-1-5 AFM分析 32 4-2塗層物理測試 33 4-2-1自潔淨測試 33 4-2-2老化測試 34 4-2-3水滴衝擊測試 35 4-2-4砂紙磨耗測試 36 4-2-5防水/浮力測試 37 4-2-6抗結垢試驗A 39 4-2-7抗結垢試驗B 40 4-3塗層穩定性 42 4-3-1耐酸鹼鹽測試 42 4-3-2耐熱測試(沸水) 43 4-3-3耐熱測試(蒸氣) 43 4-3-4超音波震盪測試 44 4-4塗料防蝕性能 45 4-4-1極化曲線分析 45 4-4-2交流阻抗分析 46 4-4-3海水浸漬試驗 47 4-5超疏水塗層總結與比較 48 第五章 結論 49 第六章 參考文獻 50

    1. Liao, R., et al., Biomimetic Mineralization to Fabricate Superhydrophilic and Underwater Superoleophobic Filter Mesh for Oil–Water Separations. Industrial & Engineering Chemistry Research, 2020. 59(13): p. 6226-6235.
    2. Mehmood, U., et al., Superhydrophobic surfaces with antireflection properties for solar applications: A critical review. Solar Energy Materials and Solar Cells, 2016. 157: p. 604-623.
    3. Lee, J.-H., et al., Determination of optimum protection potential for cathodic protection of offshore wind-turbine-tower steel substructure by using potentiostatic method. Journal of the Korean Society of Marine Engineering, 2017. 41(3): p. 230-237.
    4. Al-Hadhrami, L.M., A. Quddus, and D.A. Al-Otaibi, Calcium sulfate scale deposition on coated carbon steel and titanium. Desalination and Water Treatment, 2013. 51(13-15): p. 2521-2528.
    5. Wang, F., C.L. Devine, and M.A. Edwards, Effect of Corrosion Inhibitors on In Situ Leak Repair by Precipitation of Calcium Carbonate in Potable Water Pipelines. Environ Sci Technol, 2017. 51(15): p. 8561-8568.
    6. Jiang, L., Y. Zhao, and J. Zhai, A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew Chem Int Ed Engl, 2004. 43(33): p. 4338-41.
    7. Li, X.M., D. Reinhoudt, and M. Crego-Calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev, 2007. 36(8): p. 1350-68.
    8. Reverdy, C., et al., One-step superhydrophobic coating using hydrophobized cellulose nanofibrils. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 544: p. 152-158.
    9. Nosonovsky, M. and B. Bhushan, Biomimetic Superhydrophobic Surfaces: Multiscale Approach. Nano Lett., 2007. 7(9): p. 2633–2637.
    10. Fihri, A., et al., Recent progress in superhydrophobic coatings used for steel protection: A review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017. 520: p. 378-390.
    11. Li, Y., et al., Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Applied Physics Letters, 2000. 76(15): p. 2011-2013.
    12. Mahadik, S.A., et al., Thermally stable and transparent superhydrophobic sol–gel coatings by spray method. Journal of Sol-Gel Science and Technology, 2012. 63(3): p. 580-586.
    13. Vilaro, I., J.L. Yague, and S. Borros, Superhydrophobic Copper Surfaces with Anticorrosion Properties Fabricated by Solventless CVD Methods. ACS Appl Mater Interfaces, 2017. 9(1): p. 1057-1065.
    14. Liu, X., et al., Stable and Durable Conductive Superhydrophobic Coatings Prepared by Double-Layer Spray Coating Method. Nanomaterials (Basel), 2021. 11(6).
    15. S. Shibuichi, et al., Super water-and oil-repellent surfaces resulting from fractal structure. J Colloid Interf Sci, 1998. 208(1): p. 287-294.
    16. Wan, Y., et al., The research on preparation of superhydrophobic surfaces of pure copper by hydrothermal method and its corrosion resistance. Electrochimica Acta, 2018. 270: p. 310-318.
    17. MacLeod, M., et al., The global threat from plastic pollution. Science, 2021. 373: p. 61–65.
    18. Onda, T., Theoretical Investigation of Wenzel and Cassie Wetting States on Porous Films and Fiber Meshes. Langmuir, 2022. 38(45): p. 13744-13752.
    19. Zhang, J., L. Zhang, and X. Gong, Large-Scale Spraying Fabrication of Robust Fluorine-Free Superhydrophobic Coatings Based on Dual-Sized Silica Particles for Effective Antipollution and Strong Buoyancy. Langmuir, 2021. 37(19): p. 6042-6051.
    20. Wang, C., et al., Novel Environmentally Friendly Waterborne Epoxy Coating with Long-Term Antiscaling and Anticorrosion Properties. Langmuir, 2021. 37(31): p. 9439-9450.
    21. Liu, Y., et al., A superhydrophobic TPU/CNTs@SiO2 coating with excellent mechanical durability and chemical stability for sustainable anti-fouling and anti-corrosion. Chemical Engineering Journal, 2022. 434.
    22. Barthlott, W. and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997. 202: p. 1-8.
    23. Neinhuis, C. and W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 1997. 79: p. 667-677.
    24. Jeevahan, J., et al., Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. Journal of Coatings Technology and Research, 2018. 15(2): p. 231-250.
    25. Qingping, K., et al., Superhydrophobicity: Theoretical Models and Mechanism. Progress in Chemistry, 2010. 22(0203): p. 284-290.
    26. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 1936. 28: p. 988-994.
    27. Cassie, A.B.D. and S. Baxte, Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40: p. 546-551.
    28. Liu, X., et al., Extreme wettability and tunable adhesion: biomimicking beyond nature? Soft Matter, 2012. 8(7): p. 2070-2086.
    29. Bormashenko, E., et al., Robust technique allowing manufacturing superoleophobic surfaces. Applied Surface Science, 2013. 270: p. 98-103.
    30. Feng, X.J. and L. Jiang, Design and Creation of Superwetting/Antiwetting Surfaces. Advanced Materials, 2006. 18(23): p. 3063-3078.
    31. Bico, J., U. Thiele, and D. Quéré, Wetting of textured surfaces. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 2002. 206: p. 41-46.
    32. TUTEJA, A., et al., Designing Superoleophobic Surfaces. Science, 2007. 318(5856): p. 1618-1622.
    33. 陶宇 and 李亞冰, 海洋防污塗料技術的研究現狀及展望. 化學與黏合, 2012. 37: p. 67-71.
    34. Lejars, M., A. Margaillan, and C. Bressy, Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev, 2012. 112(8): p. 4347-90.
    35. Yang, W.J., et al., Polymer brush coatings for combating marine biofouling. Progress in Polymer Science, 2014. 39(5): p. 1017-1042.
    36. Liu, Y., et al., Design and preparation of biomimetic polydimethylsiloxane (PDMS) films with superhydrophobic, self-healing and drag reduction properties via replication of shark skin and SI-ATRP. Chemical Engineering Journal, 2019. 356: p. 318-328.
    37. Wong, T.S., et al., Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011. 477(7365): p. 443-7.
    38. Celik, N., et al., Effect of fabric texture on the durability of fluorine-free superhydrophobic coatings. Journal of Coatings Technology and Research, 2020. 17(3): p. 785-796.
    39. Zang, D., et al., Corrosion-Resistant Superhydrophobic Coatings on Mg Alloy Surfaces Inspired by Lotus Seedpod. Advanced Functional Materials, 2017. 27(8).
    40. Hong, L. and T. Pan, Surface microfluidics fabricated by photopatternable superhydrophobic nanocomposite. Microfluidics and Nanofluidics, 2010. 10(5): p. 991-997.
    41. Gao, Q., et al., Formation of Highly Hydrophobic Surfaces on Cotton and Polyester Fabrics Using Silica Sol Nanoparticles and Nonfluorinated Alkylsilane. Ind. Eng. Chem. Res, 2009. 48(22): p. 9797-9803.
    42. Deng, B., et al., Laundering durability of superhydrophobic cotton fabric. Adv Mater, 2010. 22(48): p. 5473-7.
    43. Wang, H., et al., Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angew Chem Int Ed Engl, 2011. 50(48): p. 11433-6.
    44. Rahmawan, Y., L. Xu, and S. Yang, Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. J. Mater. Chem. A, 2013. 1(9): p. 2955-2969.
    45. Liu, H., et al., Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film between Superhydrophobicity and Superhydrophilicity. Langmuir, 2004. 20(14): p. 5659-5661.
    46. Hardman, S.J., et al., Electrospinning Superhydrophobic Fibers Using Surface Segregating End-Functionalized Polymer Additives. Macromolecules, 2011. 44(16): p. 6461-6470.
    47. Wu, D., et al., Three-Level Biomimetic Rice-Leaf Surfaces with Controllable Anisotropic Sliding. Advanced Functional Materials, 2011. 21(15): p. 2927-2932.
    48. Pitt, C.H., et al., Laboratory abrasion and electrochemical test methods as a means of determining mechanism and rates of corrosion and wear in ball mills. International Journal of Mineral Processing, 1988. 22(1-4): p. 361-380.
    49. 楊聰仁, 腐蝕概論. 防蝕工程, 1992. 6(2): p. 57-65.
    50. Fontana and Greene. Eight Forms of Corrosion. 1967; Available from: https://corrosion-doctors.org/Corrosion-History/Eight.htm.
    51. Crevice corrosion. Available from: https://www.materials.unsw.edu.au/study-us/high-school-students-and-teachers/online-tutorials/corrosion/types-corrosion/crevice-corrosion.
    52. Stress Corrosion. Available from: https://www.materials.unsw.edu.au/study-us/high-school-students-and-teachers/online-tutorials/corrosion/types-corrosion/stress-corrosion.
    53. 陳正平, 淺談「鋼材腐蝕類型與防蝕方法」. 台灣省土木技師公會-技師報, 2014.
    54. 徐偉峰, 葉映琦, and 陳泰盛, 防蝕塗料系統設計與對策. 工業材料雜誌, 2014. 327.
    55. Chen, C.J., Introduction to Scanning Tunneling Microscopy. Monographs on the physics and chemistry of materials, 2007. 64.
    56. Binnig, G., et al., Surface Studies by Scanning Tunneling Microsopy. Physical Review Letters, 1982. 49.
    57. Binnig, G., C.F. Quate, and C. Gerber, Atomic Force Microscope. Physical Review Letters, 1986. 56.
    58. 本原納米儀器有限公司. 掃描探針顯微鏡. Available from: https://www.spm.com.cn/sites/default/files/download/brochure.pdf.
    59. 楊聰仁, 腐蝕電化學分析. 材料基礎實驗(二) 腐蝕電化學實驗.
    60. BASF. Technical Information-Sovermol® 908. Available from: https://chemical.carytrad.com.tw/uploads/1/2/3/8/123848866/sovermol_908_tds.pdf.
    61. DOW. ParaloidTM thermoset and polyol resins. Available from: https://www.palmerholland.com/palmerholland/media/library/Resources/Dow-PARALOID-Polyol-Resins-Chart.pdf.
    62. Vollath, D., Agglomerates of nanoparticles. Beilstein J Nanotechnol, 2020. 11: p. 854-857.
    63. Shokri, B., M.A. Firouzjah, and S.I. Hosseini, FTIR analysis of silicon dioxide thin filmdeposited by metal organic based PECVD. Proceedings of 19th International Symposium on PlasmaChemistry Society, Germany, 27-31st July, 2009.
    64. Wang, S.-H. and P.R. Griffiths, Resolution enhancement of diffuse reflectance i.r. spectra of coals by Fourier self-deconvolution: 1. C-H stretching and bending modes. Fuel, 1985. 64(2): p. 229-236.
    65. Blossey, R., Self-Cleaning Surfaces—Virtual Realities. Nature Materials, 2003. 2(5): p. 301-306.
    66. Basu, B.B.J. and A.K. Paranthaman, A simple method for the preparation of superhydrophobic PVDF–HMFS hybrid composite coatings. Applied Surface Science, 2009. 255(8): p. 4479-4483.
    67. Khojasteh, D., et al., Droplet impact on superhydrophobic surfaces: A review of recent developments. Journal of Industrial and Engineering Chemistry, 2016. 42: p. 1-14.
    68. Wang, P., et al., Transparent and abrasion-resistant superhydrophobic coating with robust self-cleaning function in either air or oil. Journal of Materials Chemistry A, 2016. 4(20): p. 7869-7874.
    69. She, Z., et al., Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chemical Engineering Journal, 2013. 228: p. 415-424.
    70. 周榮華 and 邱世彬, 大王蓮靠浮力載重嗎? 科學發展, 2007. 414.
    71. Tong, H., et al., Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process. Biomaterials, 2004. 25(17): p. 3923-9.
    72. Xue, Z., et al., Crystallization and self-assembly of calcium carbonate under albumin Langmuir monolayers. Materials Chemistry and Physics, 2011. 129(1-2): p. 315-321.
    73. Wu, X., et al., A universal strategy to prepare hot liquid super-repellent surfaces for anti-scalding and anti-scaling. Chemical Engineering Journal, 2022. 441.
    74. Ren, S., et al., Maintenance of superhydrophobic concrete for high compressive strength. Journal of Materials Science, 2021. 56(7): p. 4588-4598.
    75. Zhao, X., et al., Environmentally benign and durable superhydrophobic coatings based on SiO(2) nanoparticles and silanes. J Colloid Interface Sci, 2019. 542: p. 8-14.
    76. Rezaee, B., et al., Enhancement of Dropwise Condensation Heat Transfer through a Sprayable Superhydrophobic Coating. Langmuir, 2023. 39(23): p. 8354-8366.
    77. Zuozhu Yin , et al., An all-in-one bio-inspired superhydrophobic coating with mechanical/chemical/physical robustness. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. 643(122803).
    78. Im, M., et al., A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter, 2010. 6(7): p. 1401.
    79. Xiu, Y., et al., Superhydrophobic optically transparent silica films formed with a eutectic liquid. Thin Solid Films, 2009. 517(5): p. 1610-1615.
    80. Latthe, S.S., et al., Optically transparent superhydrophobic TEOS-derived silica films by surface silylation method. Journal of Sol-Gel Science and Technology, 2010. 53(2): p. 208-215.

    無法下載圖示 全文公開日期 2033/08/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2033/08/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE