簡易檢索 / 詳目顯示

研究生: 王得立
Devarly - Prahas
論文名稱: Adsorption of Tetramethylammonium Hydroxide (TMAH) on Activated Carbons
Adsorption of Tetramethylammonium Hydroxide (TMAH) on Activated Carbons
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 李篤中
Duu-Jong Lee
王孟菊
Meng-Jiy Wang
江鴻龍
Hung-Lung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 182
中文關鍵詞: 活性碳吸附含浸法電漿處理表面改質四甲基氫氧化銨廢水
外文關鍵詞: activated carbon, adsorption, impregnation, plasma treatment, surface modification, tetramethylammonium hydroxide, TMAH, wastewater
相關次數: 點閱:260下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

四甲基氫氧化銨(TMAH)在現今被廣泛使用於薄膜晶體管液晶顯示器(TFT-LCD)及半導體工業製程中。因四甲基氫氧化銨具毒性且含有氮源,故在排放前必需經過特別的廢水處理程序。在此研究中,探討利用活性碳對四甲基氫氧化銨的吸附現象。在實驗中活性碳(WAKO)有最佳的結果,故更進一步藉由硝酸氧化作用(NA-WAKO),氧氣電漿處理(P10-WAKO)及矽含浸法(SM-WAKO 0.5)進行活性碳表面改質,並對含有四甲基氫氧化銨的廢水進行吸附。本實驗利用氮的吸附/脫附,掃描式電子顯微鏡,酸鹼值,界達電位,表面官能基定量及傅立葉轉換紅外線光譜儀分析活性碳的物理及化學性質。

經由表面改質的活性碳成功地改變其表面官能基及表面電荷特性,但比表面積並無增加。當平衡時間控制在24小時左右時四甲基氫氧化銨可以完全被吸附。此外,依動力學研究顯示偽二階(pseudo-second-order) 動力學模式模擬出的吸附數據比偽一階(pseudo-first-order) 動力學模式更加符合,而經由內部粒子擴散模組的計算下顯示其吸附四甲基氫氧化銨時粒子的擴散為速率決定步驟。實驗數據與蘭謨爾等溫吸附模式(Langmuir isotherm)相符合。由等溫吸附模式發現,理論吸附密度分別為27.77 mg/g (WAKO),37.46 mg/g (NA-WAKO),32.83 mg/g (SM-WAKO 0.5)及29.03 mg/g (P10-WAKO)。一般來說酸鹼值為重要的影響因素, 活性碳在鹼性的條件下易吸附四甲基氫氧化銨, 而在升溫的條件下則會影響蘭謨爾吸附常數(b)及吸附量。藉由相關的熱力學參數發現吸附現象為自發且為放熱程序。即使使用0.1 N的鹽酸使活性碳再生並且重複五次的實驗, 其脫附的結果顯示不管是WAKO或NA-WAKO都沒有太大的改變。最後可以得到的結論為活性碳吸附四甲基氫氧化銨的機制為靜電吸附。


Currently, tetramethylammonium hydroxide (TMAH) is widely used in thin-film transistor liquid crystal display (TFT-LCD) and in semiconductor processing industries. Because of its toxicity and nitrogen content, TMAH-containing wastewater has to undergo a proper wastewater treatment before discharge. In this study, several commercial activated carbons were used to study TMAH adsorption. The carbon with the best performance (WAKO) was further modified by nitric acid oxidation (NA-WAKO), oxygen plasma (P10-WAKO), and silica impregnation (SM-WAKO 0.5); and were used to adsorb wastewater containing TMAH. These activated carbons were characterized both physically and chemically, including nitrogen adsorption-desorption, scanning electron microscopy, pH drift, zeta potential measurement, Boehm titration, and Fourier transform infrared spectroscopy.

The modifications of activated carbons were found to successfully alter the surface functional groups and surface charge properties of activated carbons, while the BET analyses showed that surface areas remained practically unchanged. The adsorption of TMAH was completed at the equilibrium time of 24 hours. Furthermore, kinetic study showed that the adsorption could be better represented by pseudo-second-order, while intraparticle diffusion model revealed that the particle diffusion was the rate limiting step in TMAH adsorption. Adsorption isotherms were well-fitted by Langmuir isotherm. As found by the isotherm model, theoretical adsorption density of WAKO was 27.77 mg/g, while those of NA-WAKO, SM-WAKO 0.5, and P10-WAKO were 37.46 mg/g, 32.83 mg/g, and 29.03 mg/g, respectively. pH was found to be the most significant factor and generally, higher pH was favorable for TMAH adsorption. Increase in temperature affected not only the b constant, but also the adsorption capacity. By associated thermodynamic parameters, the adsorption was found to be spontaneous and exothermic. Desorption study revealed that both WAKO and NA-WAKO had no considerable reduction in performance even after five cycles of regeneration by 0.1 N hydrochloric acid. It was proposed that electrostatic interaction was the mechanism of TMAH adsorption on activated carbon.

ABSTRACT i ABSTRACT (in Chinese) ii ACKNOWLEDGEMENTS iii NOMENCLATURES iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xii CHAPTER 1. INTRODUCTION 1-1 1.1. Background 1-1 1.2. Objective 1-3 1.3. Scope of research 1-3 CHAPTER 2. LITERATURE REVIEW 2-1 2.1. TMAH 2-1 2.2. Adsorption 2-2 2.3. Activated carbon 2-3 2.4. Surface modification of activated carbon 2-6 2.5. Surface modification of activated carbon by plasma 2-8 2.6. Surface chemistry characterization 2-16 2.6.1. Point of zero charge (pHPZC) 2-16 2.6.2. Isoelectric point (pHIEP) 2-17 2.6.3. Boehm titration 2.18 2.7. Adsorption kinetics 2-18 2.8. Adsorption isotherms 2-20 CHAPTER 3. MATERIALS AND METHODS 3-1 3.1. Materials 3-1 3.2. Instruments 3-2 3.3. Experimental designs and methods 3-5 3.3.1. Activated carbon preparation 3-7 3.3.1.1. Activated carbon washing and sieving 3-7 3.3.1.2. Modifications of activated carbon 3-9 3.3.2. Characterizations of activated carbon 3-11 3.3.2.1. Physical characterizations 3-11 3.3.2.2. Chemical characterizations 3-13 3.3.3. Adsorption of TMAH 3-16 3.3.3.1. Adsorption isotherm and effect of temperature 3-16 3.3.3.2. Kinetic study 3-17 3.3.3.3. Effect of pH 3-18 3.3.3.4. Desorption 3-19 3.3.4. Detection levels 3-20 CHAPTER 4. RESULTS AND DISCUSSION 4-1 4.1. Critical micelle concentration of TMAH 4-1 4.2. Physical characterizations of activated carbons 4-3 4.2.1. Nitrogen adsorption-desorption 4-3 4.2.2. SEM 4-9 4.3. Chemical characterizations of activated carbons 4-11 4.3.1. pHPZC and pHIEP 4-11 4.3.2. Boehm titration 4-16 4.3.3. FTIR 4-17 4.4. Adsorption of TMAH on activated carbons 4-20 4.4.1. Equilibrium time determination 4-20 4.4.2. FTIR 4-21 4.4.3. Effect of adsorbent dose 4-23 4.4.4. Adsorption isotherms 4-24 4.4.5. Kinetic study 4-30 4.4.6. Effect of temperature 4-38 4.4.7. Desorption study 4-41 4.5. Surface modification of activated carbons 4-43 4.5.1. Characterizations of modified WAKO 4-43 4.5.2. Adsorption isotherms 4-61 4.5.3. Kinetic study 4-65 4.5.4. Effect of pH 4-67 4.5.5. Effect of temperature 4-71 4.5.6. Desorption study 4-74 4.6. Discussion 4-76 CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 5-1 5.1. Conclusions 5-1 5.2. Recommendations 5-2 REFERENCES R-1 APPENDIX A : P10-WAKO A-1 APPENDIX B: ROW B-1 B.1. Properties of ROW B-1 B.2. Adsorption of TMAH on ROW B-4

Abo-El-Enein, S.A., Eissa, M.A., Diafullah, A.A., Rizk, M.A., Mohamed, F.M., 2009, Removal of some heavy metals ions from wastewater by copolymer of iron and aluminum impregnated with active silica derived from rice husk ash, Journal of Hazardous Materials 172 (2-3), 574-579
Almazán-Almazán, M.C., Paredes, J.I., Pérez-Mendoza, M., Domingo-García, M., Fernández-Morales, I., Martínez-Alonso, A., López-Garzón, F.J., 2006, Surface characteristics of activated carbons obtained by pyrolysis of plasma pretreated PET, Journal of Physical Chemistry B 110 (23), 11327-11333
APHA, AWWA, WEF, 1995, Standard methods for the examination of water and wastewater, 19th edition, pp. 1-1 – 1-3, APHA: Washington, DC
Banat, F., Al-Asheh, S., Al-Makhadmeh, L., 2003, Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters, Process Biochemistry 39 (2), 193-202
Bandosz, T.J, Briggs, M, Gubbins, K.E., Kaneko, K, Thomson, K., 2003, Molecular models of porous carbons, pp. 98-103, Marcel Dekker: New York
Bandosz, T.J., Jagiello, J., Contescu, C., Schwarz, J.A., 1993, Characterization of the surfaces of activated carbons in terms of their acidity constant distributions, Carbon 31 (7), 1193-1202
Baquero, M.C., Giraldo, L., Moreno, J.C., Suárez-García, F., Martínez-Alonso, A., Tascón, J.M.D., 2003, Activated carbons by pyrolysis of coffee bean husks in presence of phosphoric acid, Journal of Analytical and Applied Pyrolysis 70 (2), 779–784
Berger, P., Adelman, N.B., Beckman, K.J., Campbell, D.J., Ellis, A.B., Lisensky, G.C., 1999, Preparation and properties of an aqueous ferrofluid, Journal of Chemical Education 76 (7), 943-948
Biniak, S., Szymański, G., Siedlewski, J., Światkoski, A., 1997, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon 35 (12), 1799-1810
Boehm, H.P., 1994, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon 32 (5), 759-769
Boehm, H.P., 2002, Surface oxides on carbon and their analysis: A critical assessment, Carbon 40 (2), 145-149
Boonamnuayvitaya, V., Sae-Ung, S., Tanthapanichakoon, W., 2003, Preparation of activated carbons from coffee residue for the adsorption of formaldehyde, Separation and Purification Technology 42 (2), 159-168
Boudou, J.P., Martinez-Alonzo, A., Tascon, J.M.D., 2000, Introduction of acidic groups at the surface of activated carbon by microwave-induced oxygen plasma at low pressure, Carbon 38 (7), 1021-1029
Boyd, G.E., Adamson, A.W., Myers Jr., L.S., 1947, The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics, Journal of the American Chemical Society 69 (11), 2836-2848
Chandra, T.C., Mirna, M.M, Sudaryanto, Y., Ismadji, S., 2006, Adsorption of basic dye onto activated carbon prepared from durian shell: Studies of adsorption equilibrium and kinetics, Chemical Engineering Journal 127 (1-3), 121-129
Chang, K.-F., Yang, S.-Y., You, H.-S., Pan, J.R., 2008, Anaerobic treatment of tetra-methyl ammonium hydroxide (TMAH) containing wastewater, IEEE Transactions on Semiconductor Manufacturing 21 (3), 486-491
Chen, J.P., Wu, S., 2004, Acid/Base-Treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties, Langmuir 20 (6), 2233-2242
Cheung, W.H., Szeto, Y.S., McKay, G., 2007, Intraparticle diffusion processes during acid dye adsorption onto chitosan, Bioresource Technology 98 (15), 2897-2904
Choy, K.K.H., Porter, J.F., Mckay, G., 2004, Intraparticle diffusion in single and multicomponent acid dye adsorption from wastewater onto carbon, Chemical Engineering Journal 103 (1-3), 133-145
Contescu, A., Contescu, C., Putyera, K., Schwarz, J.A., 1997, Surface acidity of carbons characterized by their continuous pK distribution and Boehm titration, Carbon 35 (1), 83-94
Contescu, A., Vass, M., Contescu, C., Putyera, K., Schwarz, J.A., 1998, Acid buffering capacity of basic carbons revealed by their continuous pK distribution, Carbon 36 (3), 247-258
Corapcioglu, M.O., Huang, C.P., 1987, The surface acidity and characterization of some commercial activated carbons, Carbon 25 (4), 569-578
Dentel, S.K., Jamrah, A.I., Sparks, D.L., 1998, Sorption and cosorption of 1,2,4-trichlorobenzene and tannic acid by organo-clays, Water Research 32 (12), 3689-3697
Diao, Y., Walawender, W.P., Fan, L.T., 2002, Activated carbons prepared from phosphoric acid activation of grain sorghum, Bioresource Technology 81 (1), 45-52
Dixit, S.G., Vanjara, A.K., Nagarkar, J., Nikoorazm, M., Desai, T., 2002, Co-adsorption of quaternary ammonium compounds - Nonionic surfactants on solid-liquid interface, Colloids and Surfaces A: Physicochemical and Engineering Aspects 205 (1-2), 39-46
Do, D. D., 1998, Adsorption Analysis: Equilibria and Kinetics, pp. 2-190, Imperial College Press: London
Domingo-García, M., López-Garzón, F.J., Pérez-Mendoza, M., 2000, Modifications produced by O2 plasma treatments on a mesoporous glassy carbon, Carbon 38 (4), 555-563
Duman, O., Ayranci, E., 2010, Adsorptive removal of cationic surfactants from aqueous solutions onto high-area activated carbon cloth monitored by in situ UV spectroscopy, Journal of Hazardous Materials 174 (1-3), 359-367
Ellingson, E.O., 1915, The heat of neutralization of hydroxylamine and tetramethylammonium hydroxide, Journal of the American Chemical Society 37 (4), 699-709
El-Sayed, Y., Bandosz, T.J., 2004, Adsorption of valeric acid from aqueous solution onto activated carbons: role of surface basic sites, Journal of Colloid and Interface Science 273 (1), 64-72
Febrianto, J., Kosasih, A.N., Sunarso, J., Ju, Y.-H., Indraswati, N., Ismadji, S., 2009, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies, Journal of Hazardous Materials 162 (2-3), 616-645
Feng, H., Huang, C., Xu, T., 2008, Production of tetramethyl ammonium hydroxide using bipolar membrane electrodialysis, Industrial and Engineering Chemistry Research 47 (20), 7552-7557
Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A., Órfão, J.J.M., 1999, Modification of the surface chemistry of activated carbon, Carbon 39 (9), 1379-1389
Flores, G.E., Loftus, J.E., 1992, Lithographic performance and dissolution behavior of novolac resins for various developer surfactant systems, Proceedings of SPIE - The International Society for Optical Engineering 1672, 317-334
Fowler, D.L., Loebenstein, W.V., Pall, D.B., Kraus, C.A., 1940, Some unusual hydrates of quaternary ammonium salts, Journal of the American Chemical Society 62 (5), 1140-1142
Fuente, A.M., Pulgar, G., González, F., Pesquera, C., Blanco, C., 2001, Activated carbon supported Pt catalysts: Effect of support texture and metal precursor on activity of acetone hydrogenation, Applied Catalysis A: General 208 (1-2), 35-46
García, A.B., Martínez-Alonso, A., Leon Y Leon, C.A., Tascón, J.M.D., 1998, Modification of the surface properties of an activated carbon by oxygen plasma treatment, Fuel 77 (6), 613-624
Gaur, V., Shankar, P.A., 2008, Surface Modification of Activated Carbon for the Removal of Water Impurities, Water Conditioning & Purification: June 2008
Gómez-Serrano, V., Pastor-Villegas, J., Perez-Florindo, A., Duran-Valle, C., Valenzuela-Calahorro, C., 1996, FT-IR study of rockrose and of char and activated carbon, Journal of Analytical and Applied Pyrolysis 36 (1), 71-80
Gómez-Serrano, V., Piriz-Almeida, F., Durán-Valle, C.J., Pastor-Villegas, J., 1999, Formation of oxygen structures by air activation. A study by FT-IR spectroscopy, Carbon 37 (10), 1517-1528
González-Martín, M.L., Valenzuela-Calahorro, C., Gómez-Serrano, V., 1994, Characterization study of carbonaceous materials. Calorimetric heat of adsorption of p-nitrophenol, Langmuir 10 (3), 844-854
Gu, L., Zhang, X., Lei, L., Zhang, Y., 2009, Enhanced degradation of nitrophenol in ozonation integrated plasma modified activated carbons, Microporous and Mesoporous Materials 119 (1-3), 237-244
Guo, Y. and Rockstraw, D.A., 2006, Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation, Carbon, 44 (8), 1464-1475
Helfferich, F., 1995, Ion exchange, pp. 166, Dover Publications, Inc.: New York
Hirano, K., Okamura, J., Taira, T., Sano, K., Toyoda, A., Ikeda, M., 2001, An efficient treatment technique for TMAH wastewater by catalytic oxidation, IEEE Transactions on Semiconductor Manufacturing 14 (3), 202-206
Ho, Y.-S., 2006, Review of second-order models for adsorption systems, Journal of Hazardous Materials 136 (3), 681-689
Ho, Y.S., McKay, G., 1998, Kinetic models for the sorption of dye from aqueous solution by wood, Process Safety and Environmental Protection 76 (2), 183-191
Ho, Y.S., McKay, G., 1999, A kinetic study of dye sorption by biosorbent waste product pith, Resources, Conservation and Recycling 25 (3-4), 171-193
Holownia, P., Perez-Amodio, S., Price, C.P., 2001, Effect of poly(ethylene glycol), tetramethylammonium hydroxide, and other surfactants on enhancing performance in a latex particle immunoassay of C-reactive protein, Analytical Chemistry 73 (14), 3426-3431
Hu, Z., Srinivasan, M.P., 1999, Preparation of high-surface-area activated carbons from coconut shell, Microporous and Mesoporous Materials 27 (1), 11-18
Hu, Z., Srinivasan, M.P., Ni, Y., 2001, Novel activation process for preparing highly microporous and mesoporous activated carbons, Carbon 39 (6), 877–886
Inbaraj, B.S., Sulochana, N., 2003, Carbonised jackfruit peel as an adsorbent for the removal of Cd(II) from aqueous solution, Bioresource Technology 94 (1), 49-52
Inglezakis, V.J., Poulopoulos, S.G., 2006, Adsorption, Ion Exchange, and Catalysis: Design Operations and Environmental Applications, pp. 31-33, Elsevier: Amsterdam
Jia, Y.F., Thomas, K.M., 2000. Adsorption of cadmium ions on oxygen surface sites in activated carbon, Langmuir 16 (3), 1114-1122
Kadirvelu, K., Namasivayam, C., 2002, Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution, Advances in Enviromental Research 7 (2), 471-478
Karanfil, T., Kilduff, J.E., 1999, Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants, Environmental Science and Technology 33 (18), 3217-3224
Karanfil, T., Kitis, M., Kilduff, J.E., Wigton, A., 1999, Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. Natural organic matter, Environmental Science and Technology 33 (18), 3225-3233
Katz, E., Eksteen, R., Schoenmakers, P., Miller, N., 1998, Handbook of HPLC, Chromatographic Science Series Volume 78, Marcel Dekker, Inc., New York, pp. 30
Kelleher, B.P., Doyle, A.M., Hodnett, B.K., O'Dwyer, T.F., 2002, An investigation into the adsorption characteristics of grafted mesoporous silicates for the removal of tetramethyl ammonium hydroxide from aqueous solution, Adsorption Science and Technology 20 (8), 787-796
Kelleher, B.P., Doyle, A.M., O'Dwyer, T.F., Hodnett, B.K., 2001, Preparation and use of a mesoporous silicate material for the removal of tetramethyl ammonium hydroxide (TMAH) from aqueous solution, Journal of Chemical Technology and Biotechnology 76 (12), 1216-1222
Kodama, S., Habaki, H., Sekiguchi, H., Kawasaki, J., 2002, Surface modification of adsorbents by dielectric barrier discharge, Thin Solid Films 407 (1-2), 151-155
Kodama, S., Sekiguchi, H., 2006, Estimation of point of zero charge for activated carbon treated with atmospheric pressure non-thermal oxygen plasmas, Thin Solid Films 506-507, 327-330
Kosasih, A.N., Febrianto, J., Sunarso, J., Ju, Y.-H., Indraswati, N., Ismadji, S. 2010, Sequestering of Cu(II) from aqueous solution using cassava peel (Manihot esculenta), Journal of Hazardous Materials 180 (1-3), 366-374
Kosmulski, M., 2001, Chemical properties of material surfaces, pp.177, Marcell Dekker Inc.: New York
Laine, J., Calafat, A., Labady, M., 1989, Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid, Carbon 27 (2), 191-195
László, K., Dobos, G., Onyestyák, G., Geissler, E., 2007, Influence of silicon doping on the nanomorphology and surface chemistry of a wood-based carbon molecular sieve, Microporous and Mesoporous Materials 100 (1-3), 103-110
László, K., Josepovits, K., Tombácz E., 2001, Analysis of active sites on synthetic carbon surfaces by various methods, Analytical Sciences 17, 1741–1744
Lee, D., Hong, S.H., Paek, K.-H., Ju, W.-T., 2005, Adsorbability enhancement of activated carbon by dielectric barrier discharge plasma treatment, Surface and Coatings Technology 200 (7), 2277-2282
Li, K., Wang, X., 2009, Adsorptive removal of Pb(II) by activated carbon prepared from Spartina alterniflora: Equilibrium, kinetics and thermodynamics, Bioresource Technology 100 (11), 2810-2815
Lim, Y., Mays, C.E., Kim, Y., Titlow, W.B., Ryou, C., 2010, The inhibition of prions through blocking prion conversion by permanently charged branched polyamines of low cytotoxicity, Biomaterials 31 (8), 2025-2033
Lin, C.-C., Yen, C.-C., 2007, RF oxygen plasma treatment of activated carbon electrodes for electrochemical capacitors, Journal of Applied Electrochemistry 37 (7), 813-817
Lopez-Ramon, M. V., Stoeckli, F., Moreno-Castilla, C., Carrasco-Marin, F, 1999, On the characterization of acidic and basic surface sites on carbons by various techniques, Carbon 37 (8), 1215-1221
Maliyekkal, S.M., Sharma, A.K., Philip, L., 2006, Manganese-oxide-coated alumina: A promising sorbent for defluoridation of water, Water Research 40 (19), 3497-3506
Maron, S. H., Lando, J. B., 1974, Fundamentals of Physical Chemistry, pp. 753-755, MacMillan Publishing Co Inc.: New York
Mattson, J.S., Mark, H.B., 1971, Activated Carbon, pp.41, Marcel Dekker: New York
McCabe, W.L., Smith, J.C., Harriott, P., 2001, Unit Operations of Chemical Engineering, 6th edition, pp. 506, 816-821, Mc-Graw Hill: Singapore
Menéndez, J.A., Illan-Gomez, M.J., León y León, C.A., Radovic, L.R., 1995, On the difference between the isoelectric point and the point of zero charge of carbons, Carbon 33 (11), 1655-1659
Mohan, S., Sundaraganesan, N., Mink, J., 1991, FTIR and Raman studies on benzimidazole, Spectrochimica Acta Part A: Molecular Spectroscopy 47 (8), 1111-1115
Mozammel, H.M., Masahiro, O., Bhattacharya, S.C., 2002, Activated charcoal from coconut shell using ZnCl2 activation, Biomass and Bioenergy 22 (5), 397-400
Mukhiya, R., Bagolini, A., Margesin, B., Zen, M., Kal, S., 2006, <100> bar corner compensation for CMOS compatible anisotropic TMAH etching, Journal of Micromechanics and Microengineering 16 (11), 2458-2462
Myers, D., 1991, Surfaces, Interfaces, and Colloids: Principles and Applications, pp. 69-85, 175-185, 299-332, VCH Publishers, Inc.: New York
Noh, J.S., Schwarz, J.A., 1989, Estimation of the point of zero charge of simple oxides by mass titration, Journal of Colloid and Interface Science 130 (1), 157-164
Noh, J.S., Schwarz, J.A., 1990, Effect of HNO3 treatment on the surface acidity of activated carbons, Carbon 28 (5), 675-682
Norikazu, K., Yamada, H., Yajima, T., Sugiyama, K., 2007, Surface properties of activated carbon treated by cold plasma heating, Thin Solid Films 515 (9), 4192-4196
Nowicki, P., Pietrzak, R., Wachowska, H., 2008, Comparison of physicochemical properties of nitrogen-enriched activated carbons prepared by physical and chemical activation of brown coal, Energy and Fuels 22 (6), 4133-4138
Pal, P., Sato, K., Hida, H., Gosalvez, M.A., Kimura, Y., Ishibashi, K., Niwano, M., 2009, Surfactant in TMAH for new shapes of silicon MEMS components; its orientation dependent adsorption detected by infrared spectroscopy, Transducers 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, 751-754
Park, S.-J., Kim, B.-J., 2004, Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers, Journal of Colloid and Interface Science 275 (2), 590-595
Pavia, D.L., Lampman, G.M., Kris, G.S., Vyvyan, J.R., 2009, Introduction to Spectroscopy, 4th edition, pp. 29-85, Cengage Learning: Belmont
Plazinski, W., Rudzinski, W., Plazinska, A., 2009, Theoretical models of sorption kinetics including a surface reaction mechanism: A review, Advances in Colloid and Interface Science 152 (1-2), 2-13
Prahas, D., Kartika, Y., Indraswati, N., Ismadji, S., 2008, Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization, Chemical Engineering Journal 140 (1-3), 32-42
Puziy, A.M., Poddubnaya, O.I., Martínez-Alonso, A., Suárez-García, F., Tascón, J.M.D., 2002, Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties, Carbon 40 (9), 1493-1505
Qian, Q., Machida, M., Tatsumoto, H., 2007, Preparation of activated carbons from cattle-manure compost by zinc chloride activation, Bioresource Technology 98 (2), 353-360
Qu, G.-Z., Li, J., Wu, Y., Li, G.-F., Li, D., 2009, Regeneration of acid orange 7-exhausted granular activated carbon with dielectric barrier discharge plasma, Chemical Engineering Journal 146 (2), 168-173
Reichenberg, D., 1953, Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange, Journal of the American Chemical Society 75 (3), 589-597
Rodriguez-Reinoso, F., 1998, The role of carbon materials in heterogeneous catalysts, Carbon 36 (3), 159-175
Rosas, J.M., Bedia, J., Rodríguez-Mirasol, J., Cordero, T., 2009, HEMP-derived activated carbon fibers by chemical activation with phosphoric acid, Fuel 88 (1), 19-26
Schukin, L.I., Kornievich, M.V., Vartapetjan, R.S., Beznisko, S.I., 2002, Low-temperature plasma oxidation of activated carbons, Carbon 40 (11), 2028-2030
Sisson, W.A., Saner, W.R., 1939, An x-ray diffraction study of the swelling action of several quaternary ammonium hydroxides on cellulose fibers, Journal of the Physical Chemistry 43 (6), 687-699
Smith, J.M., 1981, Chemical Engineering Kinetics, 3rd edition, pp. 311-324, Mc-Graw Hill: Singapore
Srinivasakannan, C., and Bakar, M.Z.A., 2004, Production of activated carbon from rubber wood sawdust, Biomass and Bioenergy 27 (1), 89-96
Stavropoulos, G.G., Zabaniotou, A.A., 2005, Production and characterization of activated carbons from olive-seed waste residue, Microporous and Mesoporous Materials 83 (1-2), 79-85
Steinsland, E., Finstad, T., Hanneborg, A., 2000, Etch rates of (100), (111) and (110) single-crystal silicon in TMAH measured in situ by laser reflectance interferometry, Sensors and Actuators, A: Physical 86 (1-2), 73-80
Sudaryanto, Y., Hartono, S.B., Irawaty, W., Hindarso, H., Ismadji, S., 2006, High surface area activated carbon prepared from cassava peel by chemical activation, Bioresource Technology 97 (5), 734-739
Sugawara, H., Tajima, Y., Ohmi, T., 2002, A study on reclaimed photoresist developer using an electrodialysis method, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 41 (4 B), 2374-2379
Tamai, H., Kunihiro, M., Yasuda, H., 2004, Adsorption of tetraalkylammonium ions on microporous and mesoporous activated carbons prepared from vinylidene chloride copolymer, Journal of Colloid and Interface Science, 275 (1), 44-47
Tanada, S., Kawasaki, N., Nakamura, T., Izawa, J., Torii, Y., 1994, Structural analysis of plasma-treated activated carbon using nitrogen adsorption method, Journal of Colloid and Interface Science 168 (2), 522-525
Tanada, S., Kawasaki, N., Nakamura, T., Ohue, T., Abe, I., 1997, Adsorbability of 1,1,1,2-tetrafluoromethane (HFC134a) onto plasma-treated activated carbon in CF4 and CCl4, Journal of Colloid and Interface Science 191 (2), 337-340
Tanada, S., Tsutsui, S., Boki, K., Nakamura, T., 1987, Adsorption behavior of ammonia in pores of oxygen plasma treated activated carbon, Chemical & Pharmaceutical Bulletin 35 (8), 3433-3437
Tanada, S., Tsutsui, S., Boki, K., Nakamura, T., 1988a, Preparation of plasma-treated activated carbon suitable for ammonia adsorption, Chemical & Pharmaceutical Bulletin 36 (5), 1919-1921
Tanada, S., Tsutsui, S., Boki, K., Nakamura, T., 1988b, Adsorption behavior of ammonia and trimethylamine binary mixtures in pores of plasma-treated activated carbon, Eisei Kagaku (2), 156-160
Tashima, D., Kurosawatsu, K., Uota, M., Karashima, T., Sung, Y.-M., Otsubo, M., Honda, C., 2006, Plasma surface treatment of carbonaceous materials for application in electric double layer capacitors, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 45 (10 B), 8521-8524
Tchobanoglous, G., Burton, F.L., Stensel, H.D., 2004, Wastewater Engineering: Treatment, and Reuse, Fourth Edition, pp. 1138-1144, Mc-Graw Hill: Singapore
Teng, H., Yeh, T.S., Hsu, L.H., 1998, Preparation of activated carbon from bituminous coal with phosphoric acid activation, Carbon 36 (9), 1387-1395
Thong, J.T.L., Choi, W.K., Chong, C.W., 1997, TMAH etching of silicon and the interaction of etching parameters, Sensors and Actuators, A: Physical 63 (3), 243-249
Trgo, M., Perić, J., Medvidović, N.V., 2006, A comparative study of ion exchange kinetics in zinc/lead-modified zeolite-clinoptilolite systems, Journal of Hazardous Materials 136 (3), 938-945
Tsuzaki, M., Nakamoto, S., 1990, Biodegradation of tetramethylammonium, an ingredient of a positive photoresist developer, by bacteria isolated from activated sludge, NEC Research and Development (97), 8-12
Vasu, A.E., 2008, Surface modification of activated carbon for enhancement of nickel(II) adsorption, E-Journal of Chemistry 5 (4), 814-819
Vautier-Giongo, C., Pastore, H.O., 2006, Micellization of CTAB in the presence of silicate anions and the exchange between bromide and silicate at the micelle surface: A step to understand the formation of mesoporous molecular sieves at extremely low surfactant and silicate concentrations, Journal of Colloid and Interface Science 299 (2), 874-882
Vernersson, T., Bonelli, P.R., Cerrella, E.G., Cukierman, A.L., 2001, Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation, Bioresource Technology 83 (2), 95-104
Wahab, M.A., Jellali, S., Jedidi, N., 2010, Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling, Bioresource Technology 101 (14), 5070-5075
Wibowo, N., Setyadhi, L., Wibowo, D., Setiawan, J., Ismadji, S., 2007, Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption, Journal of Hazardous Materials 146 (1-2), 237-242
Wu, F.C., Tseng, R.L., Hu, C.C., 2005, Comparisons of pore properties and adsorption performance of KOH-activated and steam-activated carbons, Microporous and Mesoporous Materials 80 (1-3), 95–106
Wu, F.-C., Tseng, R.-L., Huang, S.-C., Juang, R.-S., 2009, Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A mini-review, Chemical Engineering Journal 151 (1-3), 1-9
Wu, S.H., Pendleton, P., 2001, Adsorption of anionic surfactant by activated carbon: Effect of surface chemistry, ionic strength, and hydrophobicity, Journal of Colloid and Interface Science 243 (2), 306-315
Xiao, J.-X., Zhang, Y., Wang, C., Zhang, J., Wang, C.-M., Bao, Y.-X., Zhao, Z.-G., 2005, Adsorption of cationic-anionic surfactant mixtures on activated carbon, Carbon 43 (5), 1032-1038
Xu, S., Boyd, S.A., 1995, Alternative model for cationic surfactant adsorption by layer silicates, Environmental Science and Technology 29 (12), 3022-3028
Yalçin, M., Gürses, A., Doǧar, C., Sözbilir, M., 2005, The adsorption kinetics of cethyltrimethylammonium bromide (CTAB) onto powdered active carbon. Adsorption 10 (4), 339-348
Yamamoto, E., Kobayashi, J., Kanamaru, K., Miura, T., Watanabe, F., Kobayashi, N., Hasatani, M., 2003, Hydrophilication of activated carbon by impregnating silica into pores, Journal of Chemical Engineering of Japan 36 (3), 348-352
Yang, T. and Lua, A.C., 2006, Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells, Material Chemistry and Physics 100 (2-3), 438-444
Yao, S., Suzuki, E., Nakayama, A., 2001, Oxidation of activated carbon and methane using a high-frequency pulsed plasma, Journal of Hazardous Materials 83 (3), 237-242
Yin, C.Y., Aroua, M.K., Daud, W.M.A.W., 2007, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions, Separation and Purification Technology 52 (3), 403-405
Zhang, Y., Zheng, J., Qu, X., Chen, H., 2007, Effect of granular activated carbon on degradation of methyl orange when applied in combination with high-voltage pulse discharge, Journal of Colloid and Interface Science 316 (2), 523-530

QR CODE