簡易檢索 / 詳目顯示

研究生: 郭福貴
Vincentius Christian Bintang Parikesit
論文名稱: 基線消除方法和峰檢測在微型光譜儀模組中的應用
Application of Baseline Elimination Methods and Peaks Detection for Micro Spectrometer Module
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sendren Sheng-Dong Xu)
沈志霖
Ji-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 89
中文關鍵詞: 微型光譜儀基線校正最小二乘SWiMABEADSVRA
外文關鍵詞: Micro Spectrometer, Baseline correction, least-square, SWiMA, BEADS, VRA
相關次數: 點閱:250下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Spectrochip是一種以毫米等級開發的光柵元件,它被應用在微型光譜儀中作為分光元件。但是它輸出光譜訊息中含有我們不需要的基線,這種含有基線的訊號會影響光譜分析。為了找出訊號中的基線,普遍的基線提取方法,主要是根據興趣區間
,然後沿著估計點擬合曲線,形成基線輪廓。
本文對七種基線消除方法進行了綜合比較,以找出其中最合適的演算法。這七種方法分別是不對稱最小二乘法(aLS)、全自動基線校正(FABC)、溫哥華拉曼演算法(VRA)、自我調整反覆運算懲罰最小二乘法(airPLS)、基於小視窗移動平均(SWiMA)、基於稀疏導數(BEADS)進行基線估計和去噪以及非對稱重加權懲罰最小二乘法(arPLS)。
模擬結果表明,arPLS演算法是最佳的演算法。通過五個效能矩陣表明,該演算法能準確的估計並去除了基線雜訊。對光源的實驗結果顯示出雷射光源和汞氬燈採用SWiMA演算法表現最好,而白光led光源採用VRA法表現最好。對於牛奶樣品的實驗結果表明了SWiMA和arPLS,此兩種方法都能非常有效的進行基線估計並去除。


The Spectrochip is defined as a spectrometer module in a compact form as small as an SD card developed by miniaturizing the gratings component in micrometer order. The continuum or baseline is an unwanted component of the signals that disrupt the spectral interpretation. Most baseline extraction methods work by estimating the background noise point along the wavenumber region of interest and then drawing the curve fitting along the estimated points to form the baseline profile.
This thesis presents a comprehensive comparison of seven baseline remover methods to find the most suitable algorithm amongst them. The seven methods used for denoising the raw signals are: 1. Asymmetric Least-Squares (aLS), 2. Fully Automatic Baseline Correction (FABC), 3. Vancouver Raman Algorithm (VRA), 4. Adaptive Iteratively Reweighted Penalized Least-Squares (airPLS), 5. Small-Window Moving Average Based (SWiMA), 6. Baseline Estimation and Denoising using Sparse Derivative (BEADS), 7. Asymmetric Reweighted Penalized least-square(arPLS).
The simulated results show that arPLS is the best algorithm. It is indicated by the five performance matrices and shows that this algorithm carefully estimates and removes the baseline noise. In comparison, no sample experimental results show that the best method is SWiMA for laser and mercury sources and VRA for white-led sources. Experimental results show that the SWiMA and arPLS can very well estimate the baseline for the milk sample.

Acknowledgment I 摘要 II ABSTRACT III Contents IV List of Figures VII List of Tables X Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Thesis Objective 4 1.3 Thesis Structure 5 Chapter 2 Basic Theory 6 2.1 Diffraction principle 6 2.2 Diffraction Grating 7 2.3 Beer-Lambert Law 8 2.4 Types and Range of Spectrometer 10 2.5 Spectrometer Architecture 11 Chapter 3 Baseline Elimination and Peak Detection Method 12 3.1 Spectral Datasets 13 3.1.1 Simulated Spectral 13 3.1.2 Three Light Sources 16 3.1.3 Milk Data 17 3.2 Baseline Correction Method 19 3.2.1 Asymmetric Least-Squares 19 3.2.2 Fully Automatic Baseline Correction 20 3.2.3 Vancouver Raman Algorithm 21 3.2.4 Adaptive Iteratively Reweighted Penalized Least-Squares 22 3.2.5 Small-Window Moving Average Based 23 3.2.6 Baseline Estimation and Denoising using Sparse Derivative 24 3.2.7 Asymmetric Reweighted Penalized Least-Square 25 3.3 Method Assessment 26 3.3.1 Root Mean Squared Error 26 3.3.2 Coefficient of Determination 27 3.3.3 The goodness of Fit Coefficient 28 3.3.4 Chi-Squared 29 3.3.5 Time Cost 29 3.4 Peak Detection 30 Chapter 4 Experimental Results and Discussion 31 4.1 Simulated Signals 31 4.1.1 Constant 31 4.1.2 Line 33 4.1.3 Inverse Line 35 4.1.4 Growth 37 4.1.5 Decay 39 4.1.6 Hill 41 4.1.7 Parabola 43 4.1.8 Sine 45 4.1.9 Cosine 47 4.1.10 Tangent Hyperbolic 49 4.1.11 Performance Summary 51 4.2 Three Light Sources 52 4.2.1 Laser 1D Correction 52 4.2.2 Mercury 1D Correction 56 4.2.3 White LED 1D Correction 59 4.3 Milk Data 61 Chapter 5 Conclusion and Future Work 71 Future Work 69 References 73

[1] S. Medina, R. Perestrelo, P. Silva, J. A. M. Pereira, and J. S. Câmara, "Current trends and recent advances on food authenticity technologies and chemometric approaches," Trends Food Sci. Technol., vol. 85, January, pp. 163–176, 2019.
[2] A. Valdés, A. Beltrán, C. Mellinas, A. Jiménez, and M. C. Garrigós, "Analytical methods combined with multivariate analysis for authentication of animal and vegetable food products with high fat content," Trends Food Sci. Technol., vol. 77, May, pp. 120–130, 2018.
[3] A. Taylor, N. Barlow, M. P. Day, S. Hill, N. Martin, and M. Patriarca, "Atomic Spectrometry Update: Review of advances in the analysis of clinical and biological materials, foods and beverages," J. Anal. At. Spectrom., vol. 34, no. 3, pp. 426–459, 2019.
[4] P. Abu-Rabie and N. Spooner, "Direct quantitative bioanalysis of drugs in dried blood spot samples using a thin-layer chromatography mass spectrometer interface," Anal. Chem., vol. 81, no. 24, pp. 10275–10284, 2009.
[5] W. Zhu et al., "Rapid and low-cost quantitative detection of creatinine in human urine with a portable Raman spectrometer," Biosens. Bioelectron., vol. 154, January, p. 112067, 2020.
[6] M. Markiewicz-Keszycka et al., "Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review," Trends Food Sci. Technol., vol. 65, pp. 80–93, 2017.
[7] C. Kumaravelu and A. Gopal, "A review on the applications of Near-Infrared spectrometer and Chemometrics for the agro-food processing industries," Proc. - 2015 IEEE Int. Conf. Technol. Innov. ICT Agric. Rural Dev. TIAR 2015, Tiar, pp. 8–12, 2015.
[8] M. Amr, Y. M. Sabry, and D. Khalil, "2018 , Near-infrared optical MEMS spectrometer-based quantification of fat concentration in milk 2018 , 35 th National radio science conferences," 2018 35th Natl. Radio Sci. Conf., Nrsc, pp. 409–416, 2018.
[9] C. H. Ko et al., "Design and verification of a flat-field aberration-corrected concave blaze grating for hyperspectral imaging," 2017 Conf. Lasers Electro-Optics Pacific Rim, CLEO-PR 2017, vol. 2017-January, pp. 1–4, 2017.
[10] W. Ji et al., "Assessment of soil properties in situ using a prototype portable MIR spectrometer in two agricultural fields," Biosyst. Eng., vol. 152, pp. 14–27, 2016.

[11] A. Castrignanò et al., "Assessing the Feasibility of a Miniaturized Near-Infrared Spectrometer in Determining Quality Attributes of San Marzano Tomato," Food Anal. Methods, vol. 12, no. 7, pp. 1497–1510, 2019.
[12] M. D. Dyar, S. Giguere, C. J. Carey, and T. Boucher, "Comparison of baseline removal methods for laser-induced breakdown spectroscopy of geological samples," Spectrochim. Acta - Part B At. Spectrosc., vol. 126, pp. 53–64, 2016.
[13] S. Kobayashi et al., "Lunar farside Th distribution measured by Kaguya gamma-ray spectrometer," Earth Planet. Sci. Lett., vol. 337–338, pp. 10–16, 2012.
[14] L. P. Schuler, J. S. Milne, J. M. Dell, and L. Faraone, "MEMS-based microspectrometer technologies for NIR and MIR wavelengths," J. Phys. D. Appl. Phys., vol. 42, no. 13, 2009.
[15] J. T. Daly, E. A. Johnson, W. A. Bodkin, W. A. Stevenson, and D. A. White, "Recent advances in miniaturization of infrared spectrometers," Silicon-based Optoelectron. II, vol. 3953, March 2000, pp. 70–87, 2000.
[16] D. Xu, C. Sui, J. Tong, and H. Yang, "Optical design of micro spectrometer," Proc. 2012 2nd Int. Conf. Instrum. Meas. Comput. Commun. Control. IMCCC 2012, pp. 339–341, 2012.
[17] G. Ma and H. C. Allen, Handbook of Spectroscopy, Volumes 1 and 2 Edited by Günter Gauglitz (University of Tübingen) and Tuan Vo-Dinh (Oak Ridge National Laboratory). Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. 2003. 1168 pp. $435.00. ISBN: 3-527-29782-0., vol. 126, no. 28. 2004.
[18] C.-H. Ko, C. HONG, and W.-H. Chiu, "MEMS based SpectroChip for healthcare, food safety and blockchain applications," vol. 1098303, May, p. 3, 2019.
[19] J. Smulko and M. S. Wróbel, "Noise sources in Raman spectroscopy of biological objects," Dyn. Fluctuations Biomed. Photonics XIV, vol. 10063, March 2017, p. 100630Q, 2017.
[20] J. Carlos Cobas, M. A. Bernstein, M. Martín-Pastor, and P. G. Tahoces, "A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data," J. Magn. Reson., vol. 183, no. 1, pp. 145–151, 2006.
[21] C. Palmer, Diffraction Grating Handbook. 2005.
[22] C. Radio et al., "Optimization of the Czerny-Turner Spectrometer *," vol. I, no. 7, 1964.
[23] P. H. C. Eilers, "A perfect smoother," Anal. Chem., vol. 75, no. 14, pp. 3631–3636, 2003.

[24] O. Bazgir, S. Mitra, B. Nutter, and E. Walden, "Fully automatic baseline correction in magnetic resonance spectroscopy," Proc. IEEE Southwest Symp. Image Anal. Interpret., vol. 2018-April, September, pp. 97–100, 2018.
[25] J. Zhao, H. Lui, D. I. Mclean, and H. Zeng, "Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy," Appl. Spectrosc., vol. 61, no. 11, pp. 1225–1232, 2007.
[26] Z. M. Zhang, S. Chen, and Y. Z. Liang, "Baseline correction using adaptive iteratively reweighted penalized least squares," Analyst, vol. 135, no. 5, pp. 1138–1146, 2010.
[27] H. G. Schulze, R. B. Foist, K. Okuda, A. Ivanov, and R. F. B. Turnera, "A small-window moving average-based fully automated baseline estimation method for Raman spectra," Appl. Spectrosc., vol. 66, no. 7, pp. 757–764, 2012.
[28] X. Ning, I. W. Selesnick, and L. Duval, "Chromatogram baseline estimation and denoising using sparsity (BEADS)," Chemom. Intell. Lab. Syst., vol. 139, pp. 156–167, 2014.
[29] S.-J. Baek, A. Park, Y.-J. Ahn, and J. Choo, "Baseline correction using asymmetrically reweighted penalized least squares smoothing," Analyst, vol. 140, no. 1, pp. 250–257, 2015.

QR CODE