簡易檢索 / 詳目顯示

研究生: 高鴻哲
Hung-Che Kao
論文名稱: 4,4’-氧雙鄰苯二甲酸酐及環氧樹脂交聯磺酸化聚乙烯醇用於質子交換膜燃料電池之研究
Cross-linked of 4,4’-Oxydiphthalic anhydride and Epoxy Incorporating Sulfonated Poly (vinyl alcohol) for PEMFC Applications
指導教授: 蕭敬業
Ching-Yeh Shiau
口試委員: 黃炳照
Bing-Joe Hwang
林智汶
Chi-Wen Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 150
中文關鍵詞: 4-4'-氧雙鄰苯二甲酸酐磺酸化交聯反應4-醛基-1-3苯磺酸鈉鹽聚乙烯醇質子交換膜燃料電池環氧樹脂
外文關鍵詞: Sulfonated, ODPA, Epoxy, PEMFC, Cross-linked, DSDSBA, PVA
相關次數: 點閱:378下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究著重於發展質子交換膜燃料電池(Proton exchange membrane fuel cell,簡稱 PEMFC)之電解質薄膜,以取代價格昂貴且甲醇滲透率過高的Nafion薄膜,選擇良好成膜性、化學穩定性佳及價格便宜之聚乙烯醇(Poly(vinyl alcohol),簡稱PVA)作為質子交換膜主體,利用二甲基亞(Dimethylsulfoxid,簡稱DMSO)當作溶劑,再利用4-醛基-1,3苯磺酸鈉鹽(4-Formyl-1,3-Benzenedi-sulfonic acid,disodium salt,簡稱DSDSBA)作磺酸化(Sulfonation)處理得到帶有磺酸鈉鹽的聚乙烯醇(SPVA),導入不同比例之4,4'-氧雙鄰苯二甲酸酐(4,4'-Oxydiphthalic anhydride,簡稱ODPA)及環氧樹脂(Epoxy)合成為一交聯結構。本研究主題為探討其交聯SPVA之物理性質、熱性質及電化學性質分析。
    從FTIR圖譜得知,PVA上的OH-基團與DSDSBA上之aldehyde基會透過羥醛反應,而改質成帶有磺酸鈉鹽的聚乙烯醇狀態。從TEM圖結果得知,在低交聯程度之質子交換膜(SOE3)中,其展現較均相的離子叢聚分散於高分子基材中。由於較均相的離子叢聚,縮短質子傳遞的距離,有利質子傳導,進而提升其導電度,在20 ℃下導電度可達2.70 × 10-2 S/cm,持續升溫至70 ℃,導電度可達0.208 S/cm;相較於高交聯程度之交換膜(SOE50),因(親疏水相)相分離居多,導致質子傳遞距離變長,導電度於20 ℃下只有2.46 × 10-3 S/cm的表現。
    磺酸化程度隨著交聯劑添加量減少,而磺化比例相對增加,IEC值可達1.69 mmole/g。因SOE3薄膜IEC值高,在室溫下的含水率可達133.07 wt %。於電池測試分析中,導電度最佳的SOE3薄膜卻不如表現,在濕式氫氣與氧氣電池性能中於70 ℃下,功率密度只有154 mW/cm2的表現,交聯程度持續增加,薄膜(SOE7)功率密度可達443 mW/cm2。


    The aim of this study is to develop a new polymer electrolyte membrane for low temperature proton exchange membrane fuel cells (PEMFCs), which is taken as a possible alternative to the state-of-the-art Nafion membrane having drawbacks such as high cost and high methanol crossover. The low cost, easy film-fabrication and good chemical stability of poly(vinyl alcohol) (PVA) is chosen as the matrix backbone of proton exchange membranes. Dimethylsulfoxid (DMSO) is the cross-linked agent for the reaction.
    In addition, 4-Formyl-1,3-Benzenedisulfonic acid disodium salt (DSDSBA) is employed as the sulfonated agent to increase the sulfonic acid groups of PVA. The degree of sulfonation for PVA is controlled with different ratios of 4,4'-oxygen double-phthalic anhydride (4,4'-Oxydiphthalic anhydride, referred to as ODPA) and epoxy resin (Epoxy), and the whole cross-linked-type structure is therefore formed. The corresponding physical and thermal properties are characterized and correlated with its electrochemical properties.
    First of all the FTIR spectra provide the evidence for the condensation reaction between hydroxyl groups and aldehyde groups. The TEM images of the prepared membrane indicate better homogeneous dispersion of ion clusters in the polymer matrix for low-degree cross-linked proton exchange membrane (SOE3), which implies a shorter distance in between the ionic clusters. Nevertheless the proton transfer between ionic clusters becomes easier, resulting in an improvement of the bulk ionic conductivity. (2.70 × 10-2 S cm-1@ 20 oC and 0.208 S cm-1@ 70 oC. For high-degree cross-linked exchange membrane (SOE50), hydrophobic/hydrophilic phase separation results in the increase of the proton transfer distance. The ionic conductivity is therefore reduced (2.46 × 10-3 S cm-1@ 20 oC).
    The degree of sulfonation of cross-linked structure increases with reducing cross-linked agent. The highest IEC value is up to 1.69 mmole g-1(SOE3) with water content up to 133.07 wt% at room temperature. However the ionic conductivity of the SOE3 membrane is not as good as the prediction, which may be due to the low degree of cross-linked, which the structure was destroyed during activation and only delivers a peak power density of 154 mW cm-2 with wet H2/O2 at 70 oC. The proposed reason can be evidenced by the performance of the membrane (SOE7) of higher degree of cross-linked, which the peak power density can be enhanced up to 443 mW cm-2.

    摘要 I Abstract II 致謝 III 目錄 VII 圖目錄 X 表目錄 XIV 符號表 XV 第一章 緒論 1 1.1 燃料電池源起及發展 1 1.2 燃料電池的種類 3 1.3 研究動機與目的 11 1.4 研究架構 12 第二章 文獻回顧 15 2.1 質子交換膜燃料電池之工作原理 15 2.1.1 電池的結構分析 16 2.1.2 雙極流場板 18 2.1.3 密封用膠片 19 2.1.4 氣體擴散層 19 2.1.5 微孔層 22 2.1.6 觸媒層 24 2.1.6.1 陽極觸媒材料 24 2.1.6.2 陰極觸媒材料 25 2.1.7質子交換膜 25 2.2 質子交換膜介紹 26 2.2.1 Nafion膜簡介及Nafion膜之改質系列 27 2.2.2 離子聚合物薄膜 31 2.2.3 酸/鹼高分子薄膜 32 2.2.4 有機/無機混成薄膜 32 2.2.5 高溫型質子交換膜 33 2.3 膜電極組內反應機制及製作方式 36 2.3.1 膜電極組內傳導機制 36 2.3.2電極放電的極化現象 38 2.3.3 觸媒製備 40 2.3.4 膜電極組製備方法 42 2.3.4.1 離子交換膜和觸媒之結合技術 42 2.3.4.2 氣體擴散層和觸媒之結合技術 44 2.3.5 觸媒漿料製作 48 2.4 電池操作因素對效能影響 49 2.4.1 操作溫度影響 49 2.4.2 陰極進料影響 50 2.4.3 進料濕度影響 50 2.4.4 氣體流量影響 50 2.4.5 進料背壓影響 50 2.4.6 熱壓程序影響 51 2.4.7 雙極流場板流道設計影響 51 2.5 聚乙烯醇的磺酸化、交聯反應 56 2.5.1 聚乙烯醇之簡介 56 2.5.2 磺酸化原理 56 2.5.3 聚乙烯醇磺酸化原理 57 2.6 4,4'-氧雙鄰苯二甲酸酐簡介 58 2.7 環氧樹脂簡介 58 2.8 薄膜的製備原理 60 第三章 實驗藥品、設備、原理及步驟 61 3.1 實驗藥品與設備 61 3.1.1 實驗材料與藥品 61 3.1.2 實驗設備與器材 64 3.2 實驗步驟 65 3.3 反應合成之流程與結構示意圖 69 3.4 實驗方法與儀器原理 72 3.4.1 薄膜結構鑑定 72 3.4.1.1 傅立葉轉換紅外光譜(FTIR)儀鑑定 72 3.4.1.2 固態核磁共振(NMR)光譜儀鑑定 73 3.4.2 熱性質之分析 74 3.4.3 物理性質之分析 75 3.4.3.1離子交換含量(IEC)測試 75 3.4.3.2含水率(Water uptake)及薄膜澎潤度(Swelling)測試 76 3.4.3.3示差掃瞄熱分析法(DSC) 77 3.4.3.4甲醇滲透率量測(Methanol permeability) 78 3.4.3.5元素分析(EA)儀分析 80 3.4.3.6機械性質測試(Mechanical properity) 80 3.4.4電化學性質之分析 81 3.4.4.1 AC-Impedance交流阻抗電化學特性測試 81 3.4.4.2燃料電池放電測試 84 3.4.4.2.1交換膜前處理 84 3.4.4.2.2 膜電極組之組裝步驟 85 3.4.4.2.3 電池放電測試 90 3.4.5薄膜型態分析 91 3.4.5.1穿透式電子顯微(TEM)鏡測量分析 91 3.4.5.2掃描式電子顯微鏡X光譜測量分析 91 第四章 實驗結果與討論 93 4.1 薄膜之結構鑑定 93 4.1.1 SOE薄膜之傅立葉轉換紅外光譜分析 93 4.1.2 NMR分析鑑定 97 4.2 薄膜之熱性質分析 100 4.2.1 SOE薄膜之熱裂解分析 100 4.3 薄膜之型態學分析 102 4.3.1 SOE薄膜之穿透式電子顯微鏡測量分析 102 4.3.2 SOE薄膜之表面型態與組成分析 105 4.4 薄膜之物理性質及導電度分析 108 4.4.1 SOE薄膜之含水率(Water uptake)、膨脹度(Sewlling)、離子交換當量(IEC)與元素分析(EA) 108 4.4.2 SOE薄膜之示差掃描分析 112 4.4.3 SOE薄膜之導電度 115 4.4.4 SOE薄膜甲醇滲透率量測 119 4.4.5 SOE薄膜機械性質測試 123 4.5 SOE薄膜之燃料電池探討及分析 125 4.5.1 氣體流量對電池性能之影響 125 4.5.2 操作溫度對電池性能之影響 127 4.5.3 壓合壓力對電池性能之影響 129 4.5.4 SOE薄膜測試結果討論 131 第五章 結論 139 第六章 未來研究方向 141 第七章 參考文獻 143

    1. Wee J-H: Contribution of fuel cell systems to CO2 emission reduction in their application fields. Renewable and Sustainable Energy Reviews 2010, 14:735-744.
    2. Andjar JM, Segura F: Fuel cells: History and updating. A walk along two centuries. Renewable and Sustainable Energy Reviews 2009, 13:2309-2322.
    3. San Martn JI, Zamora I, San Martn JJ, Aperribay V, Eguia P: Hybrid fuel cells technologies for electrical microgrids. Electric Power Systems Research, In Press, Corrected Proof.
    4. Giner J, Dunlop JD: SEALED NICKEL-HYDROGEN SECONDARY CELL. Journal of the Electrochemical Society 1975, 122:4-11.
    5. Savinell R, Yeager E, Tryk D, Landau U, Wainright J, Weng D, Lux K, Litt M, Rogers C: Polymer electrolyte for operation at temperatures up to 200°C. Journal of the Electrochemical Society 1994, 141.
    6. Scott K, Taama WM, Argyropoulos P: Engineering aspects of the direct methanol fuel cell system. Journal of Power Sources 1999, 79:43-59.
    7. Ticianelli EA, Derouin CR, Redondo A, Srinivasan S: Methods to advance technology of proton exchange membrane fuel cells. Journal of the Electrochemical Society 1988, 135:2209-2214.
    8. Rhim J-W, Kim Y-K: Pervaporation separation of MTBE-methanol mixtures using cross-linked PVA membranes. Journal of Applied Polymer Science 2000, 75:1699-1707.
    9. Ko J, Chippar P, Ju H: A one-dimensional, two-phase model for direct methanol fuel cells - Part I: Model development and parametric study. Energy 2010, 35:2149-2159.
    10. Kamarudin SK, Achmad F, Daud WRW: Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. International Journal of Hydrogen Energy 2009, 34:6902-6916.
    11. Wan C-H, Lin C-H: A composite anode with reactive methanol filter for direct methanol fuel cell. Journal of Power Sources 2009, 186:229-237.
    12. Wan C-H, Chen C-L: Mitigating ethanol crossover in DEFC: A composite anode with a thin layer of Pt50-Sn50 nanoparticles directly deposited into Nafion membrane surface. International Journal of Hydrogen Energy 2009, 34:9515-9522.
    13. Stonehart P: Development of alloy electrocatalysts for phosphoric acid fuel cells (PAFC). Journal of Applied Electrochemistry 1992, 22:995-1001.
    14. Sanyal J, Goldin GM, Zhu H, Kee RJ: A particle-based model for predicting the effective conductivities of composite electrodes. Journal of Power Sources 2010, 195:6671-6679.
    15. Das PK, Li X, Liu Z-S: Analysis of liquid water transport in cathode catalyst layer of PEM fuel cells. International Journal of Hydrogen Energy 2010, 35:2403-2416.
    16. Paganin VA, Ticianelli EA, Gonzalez ER: Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. Journal of Applied Electrochemistry 1996, 26:297-304.
    17. Song JM, Cha SY, Lee WM: Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method. Journal of Power Sources 2001, 94:78-84.
    18. Cindrella L, Kannan AM, Lin JF, Saminathan K, Ho Y, Lin CW, Wertz J: Gas diffusion layer for proton exchange membrane fuel cells--A review. Journal of Power Sources 2009, 194:146-160.
    19. Bazylak A: Liquid water visualization in PEM fuel cells: A review. International Journal of Hydrogen Energy 2009, 34:3845-3857.
    20. Escribano S, Aldebert P: Electrodes for hydrogen/oxygen polymer electrolyte membrane fuel cells. Solid State Ionics 1995, 77:318-323.
    21. de Bruijn FA, Makkus RC, Mallant RKAM, Janssen GJM: Chapter Five Materials for State-of-the-Art PEM Fuel Cells, and Their Suitability for Operation Above 100 °C. In Advances in Fuel Cells. Volume Volume 1. Edited by T.S. Zhao KDK, Trung Van N: Elsevier Science; 2007: 235-336
    22. Qi Z, Kaufman A: Improvement of water management by a microporous sublayer for PEM fuel cells. Journal of Power Sources 2002, 109:38-46.
    23. Wang XL, Zhang HM, Zhang JL, Xu HF, Tian ZQ, Chen J, Zhong HX, Liang YM, Yi BL: Micro-porous layer with composite carbon black for PEM fuel cells. Electrochimica Acta 2006, 51:4909-4915.
    24. Nam JH, Lee K-J, Hwang G-S, Kim C-J, Kaviany M: Microporous layer for water morphology control in PEMFC. International Journal of Heat and Mass Transfer 2009, 52:2779-2791.
    25. Smitha B, Sridhar S, Khan AA: Solid polymer electrolyte membranes for fuel cell applications--a review. Journal of Membrane Science 2005, 259:10-26.
    26. Rikukawa M, Sanui K: Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science 2000, 25:1463-1502.
    27. Chen PY, Chiu CP, Hong CW: Molecular structure and transport dynamics in Nafion and sulfonated poly(ether ether ketone ketone) membranes. Journal of Power Sources 2009, 194:746-752.
    28. Kumar B, Fellner JP: Polymer-ceramic composite protonic conductors. Journal of Power Sources 2003, 123:132-136.
    29. Mauritz KA, Payne JT: [Perfluorosulfonate ionomer]/silicate hybrid membranes via base-catalyzed in situ sol-gel processes for tetraethylorthosilicate. Journal of Membrane Science 2000, 168:39-51.
    30. Higuchi Y, Terada N, Shimoda H, Hommura SUS: Patent application. EP1139472 2001:0026883A0026881.
    31. Kauranen PS, Skou E: Methanol permeability in perfluorsulfonate proton exchange membranes at elevated temperatures. Journal of Applied Electrochemistry 1996, 26:909-917.
    32. Pivovar BS: An overview of electro-osmosis in fuel cell polymer electrolytes. Polymer 2006, 47:4194-4202.
    33. Nunes SP, Ruffmann B, Rikowski E, Vetter S, Richau K: Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. Journal of Membrane Science 2002, 203:215-225.
    34. Li Q, He R, Jensen JO, Bjerrum NJ: Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 oC. Chemistry of Materials 2003, 15:4896-4915.
    35. Ulbricht M: Advanced functional polymer membranes. Polymer 2006, 47:2217-2262.
    36. Dai W, Wang H, Yuan X-Z, Martin JJ, Yang D, Qiao J, Ma J: A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells. International Journal of Hydrogen Energy 2009, 34:9461-9478.
    37. Carrette L, Friedrich KA, Stimming U: Fuel Cells - Fundamentals and Applications. Fuel Cells 2001, 1:5-39.
    38. Bernardi DM, Verbrugge MW: A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell. Journal of the Electrochemical Society 1992, 139:2477-2491.
    39. Zawodzinski JTA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S: Water Uptake by and Transport Through Nafion117 Membranes. Journal of the Electrochemical Society 1993, 140:1041-1047.
    40. Escudero MJ, Hontan E, Schwartz S, Boutonnet M, Daza L: Development and performance characterisation of new electrocatalysts for PEMFC. Journal of Power Sources 2002, 106:206-214.
    41. Kishida M, Umakoshi K, Ishiyama J-i, Nagata H, Wakabayashi K: Hydrogenation of carbon dioxide over metal catalysts prepared using microemulsion. Catalysis Today 1996, 29:355-359.
    42. Boxall DL, Deluga GA, Kenik EA, King WD, Lukehart CM: Rapid Synthesis of a Pt1Ru1/Carbon Nanocomposite Using Microwave Irradiation: A DMFC Anode Catalyst of High Relative Performance. Chemistry of Materials 2001, 13:891-900.
    43. Steigerwalt ES, Deluga GA, Cliffel DE, Lukehart CM: A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst. Journal of Physical Chemistry B 2001, 105:8097-8101.
    44. Wilson MS, Gottesfeld S: High Performance Catalyzed Membranes of Ultra-low Pt Loadings for Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society 1992, 139:L28-L30.
    45. Wilson MS, Valerio JA, Gottesfeld S: Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochimica Acta 1995, 40:355-363.
    46. Wilson MS, Gottesfeld S: Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. Journal of Applied Electrochemistry 1992, 22:1-7.
    47. Morikawa H, Tsuihiji N, Mitsui T, Kanamura K: Preparation of Membrane Electrode Assembly for Fuel Cell by Using Electrophoretic Deposition Process. Journal of the Electrochemical Society 2004, 151:A1733-A1737.
    48. Litster S, McLean G: PEM fuel cell electrodes. Journal of Power Sources 2004, 130:61-76.
    49. Giorgi L, Antolini E, Pozio A, Passalacqua E: Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochimica Acta 1998, 43:3675-3680.
    50. http://wwwfzdde/DB/Cms.
    51. Uchida M, Aoyama Y, Eda N, Ohta A: New Preparation Method for Polymer-Electrolyte Fuel Cells. Journal of the Electrochemical Society 1995, 142:463-468.
    52. Bevers D, Wagner N, Von Bradke M: Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures. International Journal of Hydrogen Energy 1998, 23:57-63.
    53. Taylor EJ, Anderson EB, Vilambi NRK: Preparation of High-Platinum-Utilization Gas Diffusion Electrodes for Proton-Exchange-Membrane Fuel Cells. Journal of the Electrochemical Society 1992, 139:L45-L46.
    54. Hirano S, Kim J, Srinivasan S: High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes. Electrochimica Acta 1997, 42:1587-1593.
    55. Uchida M, Aoyama Y, Eda N, Ohta A: Investigation of the Microstructure in the Catalyst Layer and Effects of Both Perfluorosulfonate Ionomer and PTFE-Loaded Carbon on the Catalyst Layer of Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society 1995, 142:4143-4149.
    56. Matar S, Higier A, Liu H: The effects of excess phosphoric acid in a Polybenzimidazole-based high temperature proton exchange membrane fuel cell. Journal of Power Sources 2010, 195:181-184.
    57. Hyun D, Kim J: Study of external humidification method in proton exchange membrane fuel cell. Journal of Power Sources 2004, 126:98-103.
    58. Li H, Tang Y, Wang Z, Shi Z, Wu S, Song D, Zhang J, Fatih K, Wang H, Liu Z, et al: A review of water flooding issues in the proton exchange membrane fuel cell. Journal of Power Sources 2008, 178:103-117.
    59. Zhang J, Yin GP, Wang ZB, Lai QZ, Cai KD: Effects of hot pressing conditions on the performances of MEAs for direct methanol fuel cells. Journal of Power Sources 2007, 165:73-81.
    60. Li X, Sabir I: Review of bipolar plates in PEM fuel cells: Flow-field designs. International Journal of Hydrogen Energy 2005, 30:359-371.
    61. 曾育貞: 改質聚乙烯醇作為直接甲醇燃料電池之高分子聚電解質薄膜之研究. 國立台灣科技大學化工系碩士論文 2006.
    62. Strathmann H: Membrane separation processes. Journal of Membrane Science 1981, 9:121-189.
    63. Siu A, Schmeisser J, Holdcroft S: Effect of Water on the Low Temperature Conductivity of Polymer Electrolytes. The Journal of Physical Chemistry B 2006, 110:6072-6080.
    64. Zou L, Anthamatten M: Synthesis and characterization of polyimide-polysiloxane segmented copolymers for fuel cell applications. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45:3747-3758.
    65. Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M: Aliphatic/Aromatic Polyimide Ionomers as a Proton Conductive Membrane for Fuel Cell Applications. Journal of the American Chemical Society 2006, 128:1762-1769.
    66. Lee C-H, Wang Y-Z: Synthesis and characterization of epoxy-based semi-interpenetrating polymer networks sulfonated polyimides proton-exchange membranes for direct methanol fuel cell applications. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46:2262-2276.
    67. Asano N, Miyatake K, Watanabe M: Sulfonated block polyimide copolymers as a proton-conductive membrane. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44:2744-2748.
    68. Rajendran S, Sivakumar M, Subadevi R, Nirmala M: Characterization of PVA-PVdF based solid polymer blend electrolytes. Physica B: Condensed Matter 2004, 348:73-78.
    69. Rajendran S, Sivakumar M, Subadevi R: Investigations on the effect of various plasticizers in PVA-PMMA solid polymer blend electrolytes. Materials Letters 2004, 58:641-649.
    70. Guedes M, Ferreira JMF, Ferro AC: Dispersion of Cu2O particles in aqueous suspensions containing 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt. Ceramics International 2009, 35:1939-1945.
    71. Yang C-P, Su Y-Y, Wen S-J, Hsiao S-H: Highly optically transparent/low color polyimide films prepared from hydroquinone- or resorcinol-based bis(ether anhydride) and trifluoromethyl-containing bis(ether amine)s. Polymer 2006, 47:7021-7033.
    72. Ball IK, Harrison PG, Torr A: FTIR study of thermally induced transformations of trimethylsilylmethyl acetate in the temperature range 623-813 K. Journal of Organometallic Chemistry 2000, 599:185-194.
    73. Ramrez C, Rico M, Torres A, Barral L, Lpez J, Montero B: Epoxy/POSS organic-inorganic hybrids: ATR-FTIR and DSC studies. European Polymer Journal 2008, 44:3035-3045.
    74. Srividhya M, Reddy BSR: Soluble rigid poly(imide-siloxane)s: synthesis, characterization, and structure-property relations. Journal of Applied Polymer Science 2008, 109:565-576.
    75. Zhang X, Liu S, Liu L, Yin J: Partially sulfonated poly(arylene ether sulfone)-b-polybutadiene for proton exchange membrane. Polymer 2005, 46:1719-1723.
    76. Zhang X, Liu S, Yin J: Modified sulfonated poly(arylene ether sulfone)-b-polybutadiene (SPAES-b-PB) membrane for fuel cell applications. Journal of Membrane Science 2006, 275:119-126.
    77. Tsai C-E, Lin C-W, Hwang B-J: A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation. Journal of Power Sources 2010, 195:2166-2173.
    78. Kreuer KD: On the development of proton conducting materials for technological applications. Solid State Ionics 1997, 97:1-15.
    79. Lee CH, Parkm HB, Chung YS, Lee YM, Freeman BD: Water sorption, proton conduction, and methanol permeation properties of sulfonated polyimide membranes cross-linked with N,N-Bis(2-hydroxyethyl)-2- ammoethanesulfonic acid (BES). Macromolecules 2006, 39:755-764.
    80. Kim DS, Park HB, Rhim JW, Lee YM: Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. Journal of Membrane Science 2004, 240:37-48.
    81. Chun Y-G, Kim C-S, Peck D-H, Shin D-R: Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes. Journal of Power Sources 1998, 71:174-178.
    82. Guo M, Liu B, Guan S, Liu C, Qin H, Jiang Z: Novel poly(arylene ether ketone)s containing sulfonic/carboxylic groups: Synthesis and properties. Journal of Membrane Science, In Press, Corrected Proof.
    83. Park Y-I, Kim B-S, Byun Y-H, Lee S-H, Lee E-W, Lee J-M: Preparation of supported ionic liquid membranes (SILMs) for the removal of acidic gases from crude natural gas. Desalination 2009, 236:342-348.
    84. Chen SY, Han CC, Tsai CH, Huang J, Chen-Yang YW: Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity. Journal of Power Sources 2007, 171:363-372.
    85. Cho E, Park J-S, Sekhon SS, Park G-G, Yang T-H, Lee W-Y, Kim C-S, Park S-B: A Study on Proton Conductivity of Composite Membranes with Various Ionic Liquids for High-Temperature Anhydrous Fuel Cells. Journal of the Electrochemical Society 2009, 156:B197-B202.
    86. Raghavan P, Zhao X, Manuel J, Chauhan GS, Ahn J-H, Ryu H-S, Ahn H-J, Kim K-W, Nah C: Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid. Electrochimica Acta 2010, 55:1347-1354.
    87. Thayumanasundaram S, Piga M, Lavina S, Negro E, Jeyapandian M, Ghassemzadeh L, Mller K, Di Noto V: Hybrid inorganic-organic proton conducting membranes based on Nafion, SiO2 and triethylammonium trifluoromethanesulfonate ionic liquid. Electrochimica Acta 2010, 55:1355-1365.
    88. Mistry MK, Subianto S, Choudhury NR, Dutta NK: Interfacial Interactions in Aprotic Ionic Liquid Based Protonic Membrane and Its Correlation with High Temperature Conductivity and Thermal Properties. Langmuir 2009, 25:9240-9251.
    89. Park SJ, Lee DH, Kang YS: High temperature proton exchange membranes based on triazoles attached onto SBA-15 type mesoporous silica. Journal of Membrane Science 2010, 357:1-5.

    QR CODE