簡易檢索 / 詳目顯示

研究生: 黃柏翰
Po-Han Huang
論文名稱: 穿越管狀金屬之電容與電感耦合式無線電力傳輸
Wireless Power Transmission Traverses Metal Tubular using Capacitive and Inductive Coupling
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 鄧人豪
Jen-Hao Teng
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 146
中文關鍵詞: 無線功率傳輸穿越金屬屏障集膚效應
外文關鍵詞: Wireless power transmission, crossing the metal barrier, skin effect
相關次數: 點閱:225下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文使用一種結合電場耦合與磁場耦合的方式穿越金屬屏障之無線電力傳輸方法,利用兩個具有隔離層的銅片分別環繞在金屬管兩端,在銅片與金屬管間形成電場作為電力傳輸的路徑,再將兩個銅片之間金屬管壁充當磁場耦合的初級側繞組,並且在管內配置一個高導磁率接收線圈作為次級側繞組,無線電力傳輸將由H橋dc/ac轉換器和所述耦合機制透過串聯-串聯補償諧振架構所完成;考慮到先前平板金屬屏障研究中集膚效應所造成的問題,因此提出管狀應用,由於是環形結構,所以較不會受到集膚效應的影響,並提出了一種分析管狀導體電磁場之方法。
為了考慮管壁的集膚效應,本研究使用ANSYS Maxwell模擬軟體建立3D模型進行電磁場的模擬,並利用MATLAB/SIMULINK模擬軟體對驅動電路進行系統模擬,以評估本文提出系統之性能,最後,使用數位訊號處理器TMS320F28069作為控制核心,建立一個全橋式SS諧振轉換器和數種不同規格之金屬屏障架構,透過實驗量測驗證本文提出之方法可行性,模擬與實驗結果將於本論文中呈現。


This thesis applied a wireless measure to transfer power across a tube-shape metal barrier by combining with electric field coupling and magnetic field coupling. The electric field coupling is set up by two copper films with isolated layers which round at the top and bottom parts of the metal tube. The tube wall between the top and bottom ends acts as the primary side of the magnetic field coupling and a receiving coil with high-permeability core deployed inside the tube acts as the secondary winding. The wireless power transfer is accomplished by an H-bridge dc/ac converter and a series-series resonant structure which contains the mentioned coupling mechanism. Compared to previous study in which plate mental barrier was under considered, the tube application is not suffered from skin effect due to the round wall construction. A magnetic field analysis method is proposed for metal tube, and relative equations are derived as well.
In order to consider the skin effect of the mental tube wall, the Electromagnetic field of the tube wall is analyzed with ANSYS Maxwell 3D simulation software, and the drive circuit is also simulated with MATLAB/SIMULINK simulation software to evaluate the performance of the proposed system. Two metal tubes with different diameters and one metal plate are used as the barriers for testing, and a prototype based on digital signal processor (TMS320F28069) is set up to demonstrate the experimental results of this study.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XIV 第一章 緒論 1 1.1研究背景與動機 1 1.2內容大綱 3 第二章 無線電力傳輸穿越金屬之原理與分析 4 2.1無線電力傳輸技術發展與理論 4 2.1.1安培(Ampere)定律 7 2.1.2必歐-沙伐定律(Biot-Savart Law) 9 2.1.3法拉第(Faraday)定律 10 2.1.4馬克斯威爾(Maxwell)方程式 11 2.1.5無線電力傳輸技術分類 12 2.2克服金屬屏障能量傳輸阻斷技術之原理 15 2.2.1電容式電力傳輸技術(CPT)特點及應用 15 2.2.2電容與電感耦合式電力傳輸技術(CPT-IPT)介紹 18 2.3諧振補償電路架構分析與選用 20 2.4全橋式SS諧振轉換器動作與控制原理 27 2.5管狀金屬電磁特性分析 32 第三章 系統架構設計與分析 46 3.1管狀與平板金屬屏障集膚效應之影響 46 3.2耦合電容之設計 50 3.3耦合電感之設計 54 3.4電容與電感耦合式架構之電磁場分析 60 3.4.1耦合電容分析 60 3.4.2耦合電感分析 63 3.5接收端線圈與磁場檢測空氣線圈之設計 76 3.5.1接收端線圈之設計 76 3.5.2磁場檢測空氣線圈之設計 78 第四章 模擬軟體與硬體電路 79 4.1電磁場有限元素分析模擬軟體 79 4.2硬體架構 81 4.2.1一次側全橋變流器主電路架構 82 4.2.2功率開關驅動電路 83 4.2.3金屬屏障架構 84 4.3軟體規劃 87 第五章 實作與量測結果 90 5.1管狀和平板金屬屏障在接收端不同位置下的磁場強度 90 5.2不同管徑下管狀金屬屏障在接收端不同位置下的磁場強度 102 5.3量測管狀金屬屏障外部的磁場強度 107 5.4穿越管狀金屬之電容與電感耦合式無線電力傳輸實測與模擬 112 5.4.1電容與電感耦合式無線電力傳輸模擬 113 5.4.2穿越管狀金屬之電容與電感耦合式無線電力傳輸實測 115 第六章 結論與未來方向 120 6.1結論 120 6.2未來方向 120 參考文獻 121 附錄A 127 附錄B 128

[1] G. A. Covic and J. T. Boys, "Inductive Power Transfer," Proceedings of the IEEE, vol. 101, no. 6, pp. 1276-1289, June 2013.
[2] M. Ali and H. Nugroho, "Effective power amplifier of wireless power transfer system for consumer electronics," 2016 IEEE International Conference on Power System Technology (POWERCON), Wollongong, NSW, 2016, pp. 1-5.
[3] S. B. Lee, S. Ahn, J. H. Lee and I. G. Jang, "Optimization of the wireless power transfer system in an electric railway," 2014 IEEE Wireless Power Transfer Conference, Jeju, 2014, pp. 158-161.
[4] N. Teerakawanich, "Dynamic Modeling of Wireless Power Transfer Systems with a Moving Coil Receiver," 2018 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Bangkok, 2018, pp. 1-5.
[5] O. C. Onar, M. Chinthavali, S. L. Campbell, L. E. Seiber, C. P. White and V. P. Galigekere, "Modeling, Simulation, and Experimental Verification of a 20-kW Series-Series Wireless Power Transfer System for a Toyota RAV4 Electric Vehicle," 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, 2018, pp. 874-880.
[6] M. Miyazaki, S. Abe, Y. Suzuki, N. Sakai, T. Ohira and M. Sugino, "Sandwiched parallel plate capacitive coupler for wireless power transfer tolerant of electrode displacement," 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, 2017, pp. 29-32.
[7] T. P. Delhaye, N. André, S. Gilet, C. Gimeno, L. A. Francis and D. Flandre, "High-efficiency wireless power transfer for mm-size biomedical implants," 2017 IEEE SENSORS, Glasgow, 2017, pp. 1-3.
[8] R. Shadid and S. Noghanian, "Hybrid power transfer and wireless antenna system design for biomedical implanted devices," 2018 International Applied Computational Electromagnetics Society Symposium (ACES), Denver, CO, 2018, pp. 1-2.
[9] N. Ha-Van and C. Seo, "Butterfly-Shaped Transmitting Coil for Wireless Power Transfer System in Millimeter-Sized Biomedical Implants," 2018 IEEE Wireless Power Transfer Conference (WPTC), Montreal, QC, Canada, 2018, pp. 1-4.
[10] Dongwook Kim, Jaehyoung Park, Kibeom Kim, Hyun Ho Park and Seungyoung Ahn, "Propulsion and control of implantable micro-robot based on wireless power transfer," 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, 2015, pp. 1-4.
[11] J. Wang and Q. Huang, "Wireless power transfer system in the LED lighting application," 2015 12th China International Forum on Solid State Lighting (SSLCHINA), Shenzhen, 2015, pp. 120-122.
[12] M. P. Kazmierkowski, R. M. Miskiewicz and A. J. Moradewicz, "Inductive coupled contactless energy transfer systems - a review," 2015 Selected Problems of Electrical Engineering and Electronics (WZEE), Kielce, 2015, pp. 1-6.
[13] L. Huang, A. P. Hu, A. Swain, S. Kim and Y. Ren, "An overview of capacitively coupled power transfer — A new contactless power transfer solution," 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, 2013, pp. 461-465.
[14] L. Huang, A. P. Hu, A. K. Swain, and Y. Su, “Accurate steady-state modeling of capacitive-coupling interface of capacitive power transfer systems with cross-coupling,” Wireless Power Transfer, vol. 3, no. 1, pp. 53–62, 2016.
[15] A. Hassan, A. Trigui, U. Shafique, Y. Savaria and M. Sawan, "Wireless power transfer through metallic barriers enclosing a harsh environment; feasibility and preliminary results," 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, 2016, pp. 2391-2394.
[16] D. J. Graham, J. A. Neasham and B. S. Sharif, "Investigation of Methods for Data Communication and Power Delivery Through Metals," IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4972-4980, Oct. 2011.
[17] M. Yamakawa, Y. Mizuno, J. Ishida, K. Komurasaki, H. Koizumi, "Wireless power transmission into a space enclosed by metal walls using magnetic resonance coupling", Wireless Eng. Technol., vol. 05, no. 1, pp. 19-24.
[18] O. Imoru, A. Jassal, H. Polinder, E. Nieuwkoop, J. Tsado and A. A. Jimoh, "An Inductive Power Transfer through metal object," 2013 1st International Future Energy Electronics Conference (IFEEC), Tainan, 2013, pp. 246-251.
[19] C. Van Pham, A. Pham and C. S. Gardner, "Development of Helical circular coils for wireless through-metal inductive power transfer," 2017 IEEE Wireless Power Transfer Conference (WPTC), Taipei, 2017, pp. 1-3.
[20] T. Campi, S. Cruciani and M. Feliziani, "Magnetic shielding of wireless power transfer systems," 2014 International Symposium on Electromagnetic Compatibility, Tokyo, Tokyo, 2014, pp. 422-425.
[21] W. Zhou, Y. Su, L. Huang, X. Qing and A. P. Hu, "Wireless Power Transfer Across a Metal Barrier by Combined Capacitive and Inductive Coupling," IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 4031-4041, May 2019.
[22] I. Mayordomo, T. Dräger, P. Spies, J. Bernhard and A. Pflaum, "An Overview of Technical Challenges and Advances of Inductive Wireless Power Transmission," Proceedings of the IEEE, vol. 101, no. 6, pp. 1302-1311, June 2013.
[23] Ron-Chi Kuo, P. Riehl, A. Satyamoorthy, W. Plumb, P. Tustin and Jenshan Lin, "A 3D resonant wireless charger for a wearable device and a mobile phone," 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, 2015, pp. 1-3.
[24] M. Rouissiya, I. E. Abbassi, B. Amghar, A. Jaafari, A. -. Darcherif and A. Saad, "Electrical energy wireless transfert: Application to electric roads," 2017 15th International Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, 2017, pp. 309-313.
[25] F. Zhang, S. Dong and X. Yin, "Analysis of the wireless charging's multiple coils structure and efficiency based on magnetic field," 2016 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, 2016, pp. 1-4.
[26] M. Debbou and F. Colet, "Inductive wireless power transfer for electric vehicle dynamic charging," 2016 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Knoxville, TN, 2016, pp. 118-122.
[27] S. R. Khutwad and S. Gaur, "Wireless charging system for electric vehicle," 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, 2016, pp. 441-445.
[28] A. Ahmad, M. S. Alam and R. Chabaan, "A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles," IEEE Transactions on Transportation Electrification, vol. 4, no. 1, pp. 38-63, March 2018.
[29] D. Patil, M. K. McDonough, J. M. Miller, B. Fahimi and P. T. Balsara, "Wireless Power Transfer for Vehicular Applications: Overview and Challenges," IEEE Transactions on Transportation Electrification, vol. 4, no. 1, pp. 3-37, March 2018.
[30] N. S. Jeong and F. Carobolante, "Enabling wireless power transfer though a metal encased handheld device," 2016 IEEE Wireless Power Transfer Conference (WPTC), Aveiro, 2016, pp. 1-3.
[31] André Kurs, Aristeidis Karalis, Robert Moffatt, J. D. Joannopoulos, Peter Fisher, Marin Soljacic, Wireless Power Transfer via Strongly Coupled Magnetic Resonances, 2007 page 83-86.
[32] T. M. Mostafa, D. Bui, A. Muharam, R. Hattori and A. P. Hu, "A Capacitive Power Transfer System with a CL Network for Improved System Performance," 2018 IEEE Wireless Power Transfer Conference (WPTC), Montreal, QC, Canada, 2018, pp. 1-4.
[33] S. Sasaki and K. Tanaka, "Wireless power transmission technologies for solar power satellite," 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Uji, Kyoto, 2011, pp. 3-6.
[34] K. Tanaka, "Strategic Development of Solar Power Satellite," 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, 2018, pp. 449-451.
[35] X. Chen-yang, L. Chao-wei and Z. Juan, "Analysis of power transfer characteristic of capacitive power transfer system and inductively coupled power transfer system," 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, 2011, pp. 1281-1285.
[36] C. Liu, A. P. Hu, G. A. Covic and N. C. Nair, "Comparative Study of CCPT Systems With Two Different Inductor Tuning Positions," IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 294-306, Jan. 2012.
[37] C. Liu, A. P. Hu and N. -. C. Nair, "Modelling and analysis of a capacitively coupled contactless power transfer system," IET Power Electronics, vol. 4, no. 7, pp. 808-815, Aug. 2011.
[38] T. M. Mostafa, A. Muharam and R. Hattori, "Wireless battery charging system for drones via capacitive power transfer," 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, 2017, pp. 1-6.
[39] R. Jegadeesan, K. Agarwal, Y. Guo, S. Yen and N. V. Thakor, "Wireless Power Delivery to Flexible Subcutaneous Implants Using Capacitive Coupling," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 1, pp. 280-292, Jan. 2017.
[40] K. Agarwal, R. Jegadeesan, Y. Guo and N. V. Thakor, "Wireless Power Transfer Strategies for Implantable Bioelectronics," IEEE Reviews in Biomedical Engineering, vol. 10, pp. 136-161, 2017.
[41] R. Erfani, F. Marefat and P. Mohseni, "Biosafety Considerations of a Capacitive Link for Wireless Power Transfer to Biomedical Implants," 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, 2018, pp. 1-4.
[42] C. Mi, "High power capacitive power transfer for electric vehicle charging applications," 2015 6th International Conference on Power Electronics Systems and Applications (PESA), Hong Kong, 2015, pp. 1-4.
[43] R. Sedehi, D. Budgett, A. P. Hu and D. McCormick, "Effects of Conductive Tissue on Capacitive Wireless Power Transfer," 2018 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (Wow), Montréal, QC, 2018, pp. 1-5.
[44] C. Liu, A. P. Hu and N. C. Nair, "Coupling study of a rotary Capacitive Power Transfer system," 2009 IEEE International Conference on Industrial Technology, Gippsland, VIC, 2009, pp. 1-6.
[45] D. Rozario, N. A. Azeez and S. S. Williamson, "Comprehensive review and comparative analysis of compensation networks for Capacitive Power Transfer systems," 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, 2016, pp. 823-829.
[46] Chwei-Sen Wang, O. H. Stielau and G. A. Covic, "Design considerations for a contactless electric vehicle battery charger," IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[47] 張浩緯,「低功率裝全橋式無線充電器」。碩士論文,國立臺北科技大學電子工程系研究所,2016。
[48] 王月清,吳桂生,王石(2007)。工程電磁學導論(Introduction to engineering electromagnetics)。臺北縣中和市 : 新文京開發。
[49] S. Ahyoune, J. Sieiro, M. N. Vidal and J. M. López-Villegas, "Skin effect formula for metal strips in laminated substrates," 2017 32nd Conference on Design of Circuits and Integrated Systems (DCIS), Barcelona, 2017, pp. 1-4.
[50] 涂世雄,王雄正,蔡曜州,<科學發展> 2004年6月378期。

QR CODE