簡易檢索 / 詳目顯示

研究生: 謝宛儒
Wan-Ru Shie
論文名稱: 理論計算於新型紫精衍生物之電化學和電致變色性質的研究
A Theoretical study on electrochemical and electrochromic properties of novel viologen derivatives
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 廖德章
Der-Jang LIAW
蔡明剛
Ming-Kang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 104
中文關鍵詞: 電致變色新型紫精衍生物理論計算電致變色材料
外文關鍵詞: Electrochromic Materials, Theoretical study, viologen derivatives
相關次數: 點閱:409下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

電致變色是材料的光學性質,在外加電壓的作用下改變而產生的可逆顏色變化的現象
近年來,電致變色材料(EC)及其電致變色元件(ECD)的研究受到高度的關注,可應用於智能窗戶,汽車後鏡子,安全頭盔和顯示器等各個領域。在不同種類的EC材料中,有機分子紫精(1-1'-二取代-4,4'-聯吡啶)在電化學和光電化學過程中作為氧化還原對,透過可逆的單電子還原可以形成非常穩定的自由基陽離子。但是,現今大多數電致變色材料因本身性質的因素,只能考慮單一方向上應用,例如只有單一還原或單一氧化,這導致在應用上有許多的限制。因此,開發出合適的EC材料對於新一代電致變色器件至關重要。高性能EC材料主要應具有多色特性,長期穩定性,易加工性和快速響應時間。在論文中,我們主要的目標是開發可用於還原和氧化過程的新型電致變色材料。
本研究以有機電致變色材料為主軸,利用Gaussian09中的密度泛函理論(DFT)及時間相依密度泛函理論(TD-DFT)進行電致變色材料的分析,研究了它們的電化學和光學性質,藉由改變材料的共振配體(conjugation group)、推電子基(electron donating group)及分子間的共振強度(  spacer),系統性的分析並提出能提升電致變色材料光電強度的策略。此外,我們還探討了不同強度的推電子基的效應以及溶劑對氧化和還原過程中對整體電致變色的影響。計算結果顯示所設計的單體具有清晰的顏色轉換在氧化還原過程中
。當引入更強的推電子基團和更強的 spacer在第二氧化態中有新的長波長(NIR)吸收峰產生。因此,可增加其應用性。透過本研究,吾人更加了解不同取代基在整體電致變色材料中所扮演的角色,以及發展出可同時用於氧化及還原型態的新型電致變色材料,有助於未來的電致變色材料之設計及應用,本研究希望除了透過傳統實驗的分析之外,從理論計算的角度出發,提出新的觀點供其他學者參考。


Electrochromism is the property of a material to reversibly change the color as a result of electrochemical oxidation or reduction driven by electrical bias. Recently, studies on electrochromic materials (EC) and designing suitable electrochromic devices (ECD) has attracted great attention because of their potential applications in various fields such as smart windows, mirrors, safety helmets, and displays. Among the different kind of EC materials, viologen (1-1’-disubstituted-4,4’-bipyridinum) is used as a redox couple in many electrochemical and photoelectrochemical processes, since it undergoes reversible one-electron reductions and formed very stable radical cations at very low potential. However, most of the electrochromic materials can only be used in the one direction such as either reduction or oxidation process, which resulted in only one color state. Thus, finding suitable EC materials is essential in developing a new generation of electrochromic devices. A high-performance EC material primarily should possess multicolored characteristics, long-term stability, easy processing and rapid response time. Keeping in mind, In this study, we aimed to develop the novel electrochromic materials which can be used in both reduction and oxidation processes.
In this study, we propose a simple linkage approach by merging ambipolar EC materials in both -acceptor- (-A-) and donor-acceptor-donor (D-A-D) configurations composed of Anthracene, Toluene, and Pyrene as -conjugated molecules, TPA as a donor and viologen as an acceptor moiety investigated their electrochemical and spectroelectrochemical properties using density functional theory calculations. Furthermore, we also explored the substitutional effects in donor moiety as well as the different solvents on the overall electrochromism during both oxidation and reduction processes using. Here mainly we focused the relationship between the structure, functional group’s electronic and spectral properties, as well as redox potential of designed monomers. Our calculations indicate that designed monomers have attractive absorption properties, and show clear color switching upon the redox process. Besides, introducing stronger electron donating group and stronger -spacer cause the new absorption peaks in the second oxidation states. These designed viologen derivatives will be potential candidates, which can be used in both oxidation and reduction processes for upcoming electrochromic devices.

Abstract I 摘要 II CONTENT III INDEX OF FIGURES V INDEX OF TABLES VIII Chapter 1. Introduction 1 1.1 Chromic materials 1 1.2 Electrochromic materials 2 1.2.1 Electrochromic oxidation materials 3 1.2.2 Electrochromic reduction materials 4 1.3 Electrochromic device 7 1.4 Application of electrochromic material 9 1.5 Present work 11 Chapter 2. Computational details 13 Chapter 3. 16 Design of novel electrochromic materials based on viologen: Effects of Donor and π-conjugation length 17 3.1 Introduction 17 3.2 Structural properties of viologen derivatives: 18 3.2 Optical properties 23 3.3 Electrochromic Properties: 27 3.4 Effects of substitution on EC properties 37 3.5 Conclusion 42 Chapter 4. 43 Design of novel electrochromic materials based on viologen: Effects of Solvent, Strength of Donor and π-spacer 43 4.1 Introduction 43 4.2 Effects of Conjugation in solution 44 4.3 Effects of Donor substitution in solution 54 4.4 Effect of π-spacer in D-A-D configuration 63 4.4 Conclusion 73 Chapter 5. Summary 74 Reference 76 Appendices 81

1. Deb, S., A novel electrophotographic system. Applied Optics, 1969. 8(101): p. 192-195.
2. Monk, P., R. Mortimer, and D. Rosseinsky, Electrochromism and electrochromic devices. 2007: Cambridge University Press.
3. Monk, P.M., R.J. Mortimer, and D.R. Rosseinsky, Electrochromism: fundamentals and applications. 2008: John Wiley & Sons.
4. Mortimer, R.J., Electrochromic materials. Chemical Society Reviews, 1997. 26(3): p. 147-156.
5. Mortimer, R.J., Organic electrochromic materials. Electrochimica Acta, 1999. 44(18): p. 2971-2981.
6. Thelakkat, M., Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromolecular Materials and Engineering, 2002. 287(7): p. 442-461.
7. Yen, H.-J. and G.-S. Liou, Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polymer Chemistry, 2012. 3(2): p. 255-264.
8. Ning, Z. and H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chemical Communications, 2009(37): p. 5483-5495.
9. Qian, G. and Z.Y. Wang, Near‐Infrared Organic Compounds and Emerging Applications. Chemistry–An Asian Journal, 2010. 5(5): p. 1006-1029.
10. Ito, A., M. Urabe, and K. Tanaka, A Spiro‐Fused Triarylaminium Radical Cation with a Triplet Ground State. Angewandte Chemie International Edition, 2003. 42(8): p. 921-924.
11. Yokoyama, Y., et al., A Triphenylamine Double‐Decker: From a Delocalized Radical Cation to a Diradical Dication with an Excited Triplet State. Angewandte Chemie International Edition, 2012. 51(37): p. 9403-9406.
12. Su, Y., et al., Tuning Ground States of Bis (triarylamine) Dications: From a Closed‐Shell Singlet to a Diradicaloid with an Excited Triplet State. Angewandte Chemie International Edition, 2014. 53(11): p. 2857-2861.
13. Chen, W.-H., et al., N, N, N′, N′-Tetraphenyl-1, 4-phenylenediamine− Fluorene Alternating Conjugated Polymer: Synthesis, Characterization, and Electrochromic Application. Macromolecules, 2010. 43(5): p. 2236-2243.
14. Natera, J., et al., A novel electrochromic polymer synthesized through electropolymerization of a new donor− acceptor bipolar system. Macromolecules, 2007. 40(13): p. 4456-4463.
15. Chou, M.-Y., et al., Electropolymerization of starburst triarylamines and their application to electrochromism and electroluminescence. Chemistry of materials, 2004. 16(4): p. 654-661.
16. Amthor, S., B. Noller, and C. Lambert, UV/Vis/NIR spectral properties of triarylamines and their corresponding radical cations. Chemical physics, 2005. 316(1-3): p. 141-152.
17. Polit, W., et al., Vinylruthenium-triarylamine conjugates as electroswitchable polyelectrochromic NIR dyes. BioInorganic Reaction Mechanisms, 2012. 8(3-4): p. 85-105.
18. Beaujuge, P.M. and J.R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chemical reviews, 2010. 110(1): p. 268-320.
19. Wu, C.-G., H. Ming-Hsuan, and P.-F. Tsai, Electrochromic conjugated polymers. 2011, Google Patents.
20. Mortimer, R.J., A.L. Dyer, and J.R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays, 2006. 27(1): p. 2-18.
21. Ma, C., M. Taya, and C. Xu, Flexible electrochromic device based on poly (3, 4-(2, 2-dimethylpropylenedioxy) thiophene). Electrochimica Acta, 2008. 54(2): p. 598-605.
22. Kim, Y., et al., Electrochromic diffraction from nanopatterned poly (3-hexylthiophene). ACS nano, 2010. 4(9): p. 5277-5284.
23. Somani, P.R. and S. Radhakrishnan, Electrochromic materials and devices: present and future. Materials chemistry and physics, 2003. 77(1): p. 117-133.
24. Mortimer, R.J., Electrochromic materials. Annual review of materials research, 2011. 41: p. 241-268.
25. Bulloch, R.H., et al., An Electrochromic Painter’s Palette: Color Mixing via Solution Co-Processing. ACS Applied Materials & Interfaces, 2015. 7(3): p. 1406-1412.
26. Stolar, M., et al., Synthesis and Tunability of Highly Electron-Accepting, N-Benzylated “Phosphaviologens”. Journal of the American Chemical Society, 2015. 137(9): p. 3366-3371.
27. Zhang, X., E.L. Clennan, and N. Arulsamy, Photophysical and electrochemical characterization of a helical Viologen, N, N′-dimethyl-5, 10-diaza [5] helicene. Organic letters, 2014. 16(17): p. 4610-4613.
28. Aubert, P.-H., et al., Microporous patterned electrodes for color-matched electrochromic polymer displays. Chemistry of materials, 2004. 16(12): p. 2386-2393.
29. Granqvist, C.-G., Electrochromic materials: out of a niche. Nature Materials, 2006. 5(2): p. 89.
30. Marks, Z.D., et al., Switchable diffractive optics using patterned PEDOT: PSS based electrochromic thin-films. Organic Electronics, 2016. 37: p. 271-279.
31. Mecerreyes, D., et al., A simplified all-polymer flexible electrochromic device. Electrochimica Acta, 2004. 49(21): p. 3555-3559.
32. Su, L., J. Fang, and Z. Lu, All-solid-state electrochromic window of electrodeposited WO3 and prussian blue with poly (ethylene oxide) gel electrolyte. Japanese journal of applied physics, 1997. 36(9R): p. 5747.
33. Vidinha, P., et al., Ion jelly: a tailor-made conducting material for smart electrochemical devices. Chemical Communications, 2008(44): p. 5842-5844.
34. Pozo-Gonzalo, C., et al., Highly transparent electrochromic plastic device that changes to purple and to blue by increasing the potential. Solar energy materials and solar cells, 2009. 93(12): p. 2093-2097.
35. Gonzalo, C.P., et al., Viologen-based electrochromic compositions which can be formulated and applied at room temperature. 2011, Google Patents.
36. Rosseinsky, D.R. and R.J. Mortimer, Electrochromic systems and the prospects for devices. Advanced Materials, 2001. 13(11): p. 783-+.
37. Jensen, J., et al., Development and Manufacture of Polymer-Based Electrochromic Devices. Advanced Functional Materials, 2015. 25(14): p. 2073-2090.
38. Yeh, M.H., et al., Motion-Driven Electrochromic Reactions for Self-Powered Smart Window System. Acs Nano, 2015. 9(5): p. 4757-4765.
39. Lynam, N.R., Electrochromic Automotive Day/Night Mirrors. 1987, SAE International.
40. Osterholm, A.M., et al., Four Shades of Brown: Tuning of Electrochromic Polymer Blends Toward High-Contrast Eyewear. Acs Applied Materials & Interfaces, 2015. 7(3): p. 1413-1421.
41. Gratzel, M., Materials science - Ultrafast colour displays. Nature, 2001. 409(6820): p. 575-576.
42. Remmele, J., et al., High Performance and Long-Term Stability in Ambiently Fabricated Segmented Solid-State Polymer Electrochromic Displays. Acs Applied Materials & Interfaces, 2015. 7(22): p. 12001-12008.
43. Granqvist, C.G., Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films, 2014. 564: p. 1-38.
44. Santato, C., et al., Crystallographically oriented Mesoporous WO3 films: Synthesis, characterization, and applications. Journal of the American Chemical Society, 2001. 123(43): p. 10639-10649.
45. Coppens, P., I. Novozhilova, and A. Kovalevsky, Photoinduced linkage isomers of transition-metal nitrosyl compounds and related complexes. Chemical Reviews, 2002. 102(4): p. 861-883.
46. Phillips, A.E., et al., Ru–OSO Coordination Photogenerated at 100 K in Tetraammineaqua(sulfur dioxide)ruthenium(II) (±)-Camphorsulfonate. Inorganic Chemistry, 2012. 51(3): p. 1204-1206.
47. Amb, C.M., A.L. Dyer, and J.R. Reynolds, Navigating the Color Palette of Solution-Processable Electrochromic Polymers. Chemistry of Materials, 2011. 23(3): p. 397-415.
48. Higuchi, M., et al., Electrochromic Solid-State Devices Using Organic-Metallic Hybrid Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2009. 19(1): p. 74-78.
49. Chang, T.H., et al., Multi-color electrochromic devices based on phenyl and heptyl viologens immobilized with UV-cured polymer electrolyte. Solar Energy Materials and Solar Cells, 2018. 177: p. 75-81.
50. Monk, P.M.S., The Viologens: Physicochemical Properties, Synthesis, and Applications of the Salts of 4,4′-Bipyridine. 1998, Chichester: John Wiley & Sons.
51. Wang, G.M., et al., Electrochromic and spectroelectrochemical properties of novel 4,4 '-bipyridilium-TCNQ anion radical complexes. Chemical Physics Letters, 2013. 579: p. 105-110.
52. Mortimer, R.J. and T.S. Varley, Novel Color-Reinforcing Electrochromic Device Based on Surface-Confined Ruthenium Purple and Solution-Phase Methyl Viologen. Chemistry of Materials, 2011. 23(17): p. 4077-4082.
53. Li, M., et al., Highly contrasted and stable electrochromic device based on well-matched viologen and triphenylamine. Organic Electronics, 2014. 15(2): p. 428-434.
54. Kao, S.Y., et al., Achieving a large contrast, low driving voltage, and high stability electrochromic device with a viologen chromophore. Journal of Materials Chemistry C, 2015. 3(14): p. 3266-3272.
55. Ryu, J.H., Y.H. Lee, and K.D. Suh, Preparation of a multicolored reflective electrochromic display based on monodisperse polymeric microspheres with n-substituted viologen pendants. Journal of Applied Polymer Science, 2008. 107(1): p. 102-108.
56. Cinnsealach, R., et al., Coloured electrochromic windows based on nanostructured TiO2 films modified by adsorbed redox chromophores. Solar Energy Materials and Solar Cells, 1999. 57(2): p. 107-125.
57. Choi, S.Y., et al., Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes. Nano Letters, 2004. 4(7): p. 1231-1235.
58. Stolar, M., et al., Synthesis and Tunability of Highly Electron-Accepting, N-Benzylated "Phosphaviologens". Journal of the American Chemical Society, 2015. 137(9): p. 3366-3371.
59. Monk, P.M.S., The effect of ferrocyanide on the performance of heptyl viologen-based electrochromic display devices. Journal of Electroanalytical Chemistry, 1997. 432(1-2): p. 175-179.
60. Wadhwa, K., et al., Intramolecular redox-induced dimerization in a viologen dendrimer. Journal of Materials Chemistry C, 2013. 1(12): p. 2302-2307.
61. Frisch, M.J., et al., Gaussion 09, revision A.02. 2016, Gaussian, Inc.: Wallingford, CT.
62. Yanai, T., D.P. Tew, and N.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 2004. 393(1): p. 51-57.
63. Reed, A.E., R.B. Weinstock, and F. Weinhold, Natural-population analysis. The Journal of Chemical Physics, 1985. 83: p. 735-746.
64. Cossi, M., et al., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry, 2003. 24(6): p. 669-681.
65. Barone, V. and M. Cossi, Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. Journal of Physical Chemistry A, 1998. 102(11): p. 1995-2001.
66. Roy, L.E., et al., Calculation of One-Electron Redox Potentials Revisited. Is It Possible to Calculate Accurate Potentials with Density Functional Methods? Journal of Physical Chemistry A, 2009. 113(24): p. 6745-6750.
67. Gorelsky, S.I., AOMix: Program for Molecular Orbital Analysis. 2015: http://www.sg-chem.net/.
68. Gorelsky, S.I. and A.B.P. Lever, Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods (vol 635, pg 187, 2001). Journal of Organometallic Chemistry, 2002. 659(1-2): p. 202-202.
69. Nachimuthu, S., et al., First principles study of organic sensitizers for dye sensitized solar cells: effects of anchoring groups on optoelectronic properties and dye aggregation. Physical Chemistry Chemical Physics, 2016. 18(2): p. 1071-1081.
70. Santhanamoorthi, N., C.M. Lo, and J.C. Jiang, Molecular Design of Porphyrins for Dye-Sensitized Solar Cells: A DFT/TDDFT Study. Journal of Physical Chemistry Letters, 2013. 4(3): p. 524-530.
71. Su, Y.T., et al., Tuning Ground States of Bis(triarylamine) Dications: From a Closed-Shell Singlet to a Diradicaloid with an Excited Triplet State. Angewandte Chemie-International Edition, 2014. 53(11): p. 2857-2861.
72. Ito, A., M. Urabe, and K. Tanaka, A spiro-fused triarylaminium radical cation with a triplet ground state. Angewandte Chemie-International Edition, 2003. 42(8): p. 921-+.
73. Yokoyama, Y., et al., A Triphenylamine Double-Decker: From a Delocalized Radical Cation to a Diradical Dication with an Excited Triplet State. Angewandte Chemie-International Edition, 2012. 51(37): p. 9403-9406.
74. Yen, H.J., H.Y. Lin, and G.S. Liou, Novel Starburst Triarylamine-Containing Electroactive Aramids with Highly Stable Electrochromism in Near-Infrared and Visible Light Regions. Chemistry of Materials, 2011. 23(7): p. 1874-1882.
75. White, B.G., Bipyridylium quaternary salts and related compounds. Part 3.-Weak intermolecular charge-transfer complexes of biological interest, occurring in solution and involving paraquat. Transactions of the Faraday Society, 1969. 65(0): p. 2000-2015.
76. di Matteo, A., Structural, electronic and magnetic properties of methylviologen in its reduced forms. Chemical physics letters, 2007. 439(1-3): p. 190-198.
77. Alberto, M.E., et al., Experimental and theoretical characterization of a new synthesized extended viologen. Chemical Physics Letters, 2012. 552: p. 141-145.
78. Nolan, J.E. and J.A. Plambeck, The EC-catalytic mechanism at the rotating disk electrode: Part I. Approximate theories for the pseudo-first-order case and applications to the Fenton reaction. Journal of electroanalytical chemistry and interfacial electrochemistry, 1990. 286(1-2): p. 1-21.
79. Garcia, L.L.C., et al., Square-wave voltammetric determination of paraquat using a glassy carbon electrode modified with multiwalled carbon nanotubes within a dihexadecylhydrogenphosphate (DHP) film. Sensors and Actuators B: Chemical, 2013. 181: p. 306-311.
80. Bejoymohandas, K.S., et al., Photophysical and electroluminescence properties of bis(2[prime or minute],6[prime or minute]-difluoro-2,3[prime or minute]-bipyridinato-N,C4[prime or minute])iridium(picolinate) complexes: effect of electron-withdrawing and electron-donating group substituents at the 4[prime or minute] position of the pyridyl moiety of the cyclometalated ligand. Journal of Materials Chemistry C, 2015. 3(28): p. 7405-7420.
81. Kamigaito, M., et al., A New Ruthenium Complex with an Electron-Donating Aminoindenyl Ligand for Fast Metal-Mediated Living Radical Polymerizations. Journal of the American Chemical Society, 2002. 124(34): p. 9994-9995.
82. Sommer, M., S.M. Lindner, and M. Thelakkat, Microphase‐Separated Donor–Acceptor Diblock Copolymers: Influence of HOMO Energy Levels and Morphology on Polymer Solar Cells. Advanced Functional Materials, 2007. 17(9): p. 1493-1500.
83. Zheng, Z., et al., Efficient Charge Transfer and Fine‐Tuned Energy Level Alignment in a THF‐Processed Fullerene‐Free Organic Solar Cell with 11.3% Efficiency. Advanced Materials, 2017. 29(5).
84. Lambert, C. and G. Nöll, The Class II/III Transition in Triarylamine Redox Systems. Journal of the American Chemical Society, 1999. 121(37): p. 8434-8442.

QR CODE