簡易檢索 / 詳目顯示

研究生: 郭書瑋
Shu-Wei Kuo
論文名稱: 應用於微電網系統之高效能雙向直流/直流轉換器
A High-Performance Bidirectional DC/DC Converter for Micro-Grid System Applications
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 陳建富
Jiann-Fuh Chen
梁從主
Tsorng-Juu Liang
陳耀銘
Yaow-Ming Chen
劉益華
Yi-Hua Liu
林景源
Jin-Yuan Lin
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 114
中文關鍵詞: 微電網系統雙向直流/直流轉換器零電壓切換相移控制
外文關鍵詞: bidirectional DC/DC converter, micro-grid system, zero-voltage-switching, phase-shift mechanism
相關次數: 點閱:521下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文的主要研究為應用於微電網系統之高效能雙向直流/直流轉換器,選用的架構為雙向半橋式非隔離型直流/直流轉換器,利用脈波寬度調變的控制方式,使功率開關具備零電壓切換功能。本論文亦針對此架構提出新型的控制機制,其概念為隨著輸出功率的改變,對功率開關加入相移控制,大幅地降低峰值電流與有效值電流,提升輕載時的轉換效率,達到全範圍負載高效率之目標。在充電策略方面則根據不同的電池電壓,採用不同的定電流充電,並搭配定電壓浮充模式。本論文選用德州儀器的數位信號處理器TMS320F28035實現電路數位化的目標,並實作出一台10 kW高效能雙向直流/直流轉換器,將本論文提出的相移機制經過理論推導與實作測試,全範圍負載效率在放電模式下皆在90%以上;在充電模式下皆在95%以上。


This thesis presents a high-performance bidirectional DC/DC converter for micro-grid system applications. The topology is used by the non-isolated half-bridge DC/DC converter. Zero-voltage-switching (ZVS) of power switch is realized with pluse width modulation method. Otherwise, a novel control mechanism is also proposed in this thesis. The concept is added phase-shift mechanism to control at power switch following different output power. Significantly reduces the peak current and RMS current to improve the conversion efficiency at light loads and achieve high efficiency under wide-range load variations. When charging the battery, the constant-current and constant-voltage charging method are satisfied the demands for fast charging. Therefore, a multi-stage charging method depending on the battery voltage is adopted. A digital signal processor (DSP) TMS320F28035 of Texas Instruments is used to implement a 10-kW bidirectional DC/DC converter. The phase-shift mechanism proposed in this thesis through theory and practice tests to verify its feasibility. After complete the tests, the overall load efficiency are above 90 % in discharge mode and above 95 % in charge mode.

目 錄 頁碼 摘 要 i Abstract ii 誌 謝 iii 目 錄 v 圖索引 viii 表索引 xii 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 1.3論文內容大綱 6 第二章 微電網系統 8 2.1微電網簡介 8 2.2微電網架構 9 2.3電池儲能設備 11 2.3.1定電壓充電 12 2.3.2定電流充電 12 2.3.3多階段充電法 13 2.3.4 充電策略 14 第三章 雙向直流/直流轉換器動作原理與分析 16 3.1系統架構 16 3.2雙向直流/直流轉換器模式分析 17 3.2.1放電模式 17 3.2.2充電模式 28 3.3相移機制 38 3.3.1相移控制原理與分析 38 3.3.2相移角度最佳化設計 42 第四章 雙向直流/直流轉換器小信號分析 45 4.1小信號模型 45 4.2控制系統 54 4.3類比補償器設計 56 4.3.1電壓迴路補償器 57 4.3.2電流迴路補償器 60 4.4數位補償器設計 63 4.5數位控制器系統規劃 68 4.5.1雙向轉換器系統流程圖 69 4.5.2放電模式軟體流程圖 71 4.5.3充電模式軟體流程圖 72 第五章 電路參數設計 73 5.1雙向直流/直流轉換器元件設計 73 5.1.1電感設計 73 5.1.2電池端/匯流排端之電容設計 76 5.1.3功率開關設計 77 5.1.4零電壓切換條件 78 5.1.5相移角度設計 78 5.1.6 IGBT驅動電路設計 80 第六章 模擬與實驗結果 83 6.1雙向直流/直流轉換器模擬 83 6.1.1放電模式模擬 84 6.1.2充電模式模擬 87 6.2 雙向直流/直流轉換器實測波形與數據 90 6.2.1放電模式實測結果 90 6.2.2充電模式實測結果 95 6.2.3相移機制驗證 98 6.2.4零電壓切換功能驗證 100 第七章 結論與未來展望 101 7.1結論 101 7.2未來展望 101 參考文獻 103

[1] A. Meehan, H. G.ao, and Z. Lewandowski, “Energy Harvesting with Microbial Fuel Cell and Power Management System,” IEEE Trans. on Power Electronics, vol. 26, no. 1, pp. 176-181, January, 2011.
[2] W. S. Liu, J. F. Chen, T. J. Liang, and R. L. Lin, “MultiCascoded Sources for a High-Efficiency Fuel-Cell Hybrid Power System in High-Voltage Application,” IEEE Trans. on Power Electronics, vol. 26, no. 3, pp. 931-942, March, 2011.
[3] S. Jiang, D. Cao, F. Z. Peng, and Y. Li, “Grid-Connected Boost-Half-Bridge Photovoltaic Micro Inverter System Using Repetitive Current Control and Maximum Power Point Tracking,” in Prof. Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE , vol., no., pp. 590,597, Feburary, 2012.
[4] L. Xu, X. Ruan, C. Mao, B. Zhang, and, Y. Luo, “An Improved Optimal Sizing Method for Wind-Solar-Battery Hybrid Power System,” IEEE Trans. on Sustainable Energy, vol. 4, no. 3, pp. 774-785, July, 2013.
[5] A. K. Basu, S. P. Chowdhury, S. Chowdhury, D. Ray, and P. A. Crossley, “Reliability Study of a Micro-Grid Power System,” in Prof. Universities Power Engineering Conference, 2008. UPEC 2008. 43rd International, vol., no., pp.1-4, September, 2008.
[6] Z. Zhang, M. Chen, M. Gao, Q. Mo, and Z. Qian, “An Optimal Control Method for Grid-Connected Photovoltaic Micro-Inverter to Improve the Efficiency at Light-Load Condition,” in Prof. Energy Conversion Congress and Exposition (ECCE), 2011 IEEE , vol., no., pp. 219-224, Septembr, 2011.
[7] H. H. Zeineldin, E. F. El-Saadany, and M. M. A. Salama, “Distributed Generation Micro-Grid Operation: Control and Protection,” in Prof. Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, 2006. PS '06, vol., no., pp. 105-111, March, 2006.
[8] K. T. Tan, X. Y. Peng, P. L. So, Y. C. Chu, and M. Z. Q. Chen, “Centralized Control for Parallel Operation of Distributed Generation Inverters in Microgrids,” IEEE Trans. on Smart Grid, vol. 3, no. 4, pp. 1977-1987, December, 2008.
[9] D. Yazdani, A. Bakhshai, G. Joos, and M. Mojiri, “A Nonlinear Adaptive Synchronization Technique for Grid-Connected Distributed Energy Sources,” IEEE Trans. on Power Electronics, vol. 23, no. 4, pp. 2181-2186, July, 2008.
[10] M. N. Ambia, A. AI-Durra, and S. M. Muyeen, “Centralized Power Control Strategy for AC-DC Hybrid Micro-Grid System Using Multi-Converter Scheme,” in Prof. IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society, vol., no., pp. 843-848, November, 2011.
[11] J. Cao and A. Emadi, “A New Battery/Ultra Capacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles,” IEEE Trans. on Power Electronics, vol. 27, no. 1, pp. 122-132, January, 2012.
[12] Z. Zhang, Z. Ouyang, O. C. Thomsen, and M. A. E. Andersen, “Analysis and Design of a Bidirectional Isolated DC-DC Converter for Fuel Cells and Supercapacitors Hybrid System,” IEEE Trans. on Power Electronics, vol. 27, no. 2, pp. 848-859, Feberary, 2012.
[13] Y. Xie, J. Sun, and J. S. Freudenberg, “Power Flow Characterization of a Bidirectional Galvanically Isolated High-Power DC/DC Converter Over a Wide Operating Range,” IEEE Trans. on Power Electronics, vol. 25, no. 1, pp. 54-66, January, 2010.
[14] F. Katiraei and M. R. Iravani, “Power Management Strategies for a Microgrid with Multiple Distributed Generation Units,” IEEE Trans. on Power Systems, vol. 21, no. 4, pp. 1821-1831, November, 2006.
[15] X. Hang, B. R. Lin, and Y. Hui, “Design of Higher Layer Protocol Based on CAN Bus,” Computer Engineering, vol.33, no.24, pp.158-160, December, 2007.
[16] A. A. Hussein, N. Kutkut, Z. J. Shen, and I. Batarseh, “Distributed Battery Micro-Storage Systems Design and Operation in a Deregulated Electricity Market,” IEEE Trans. on Sustainable Energy, vol. 3, no. 3, pp. 545-556, July, 2012.
[17] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC Voltage Control of the DC Micro-Grid for Super High Quality Distribution”, in Prof. Power Conversion Conference - Nagoya, 2007. PCC '07, vol., no., April, 2007.
[18] Z. Zhang, Y. Li, and W. Chen, “The Research on Micro-Grid Mode Conversion,”in Prof. Electricity Distribution (CICED), 2012 China International Conference on , vol., no., pp.1-7, September, 2012.
[19] C. Wang, Y. Li, K. Peng, B. Hong, Z. Wu, and C. Sun, “Coordinated Optimal Design of Inverter Controllers in a Micro-Grid with Multiple Distributed Generation Units,” IEEE Trans. on Power Systems, vol. 28, no. 3, pp. 2679-2687, August, 2013.
[20] M. P. Kazmierkowski, M. Jasinski, and G. Wrona, “DSP-Based Control of Grid-Connected Power Converters Operating Under Grid Distortions ,” IEEE Trans. on Industrial Informatics, vol. 7, no. 2, pp. 204-211, May, 2011.
[21] A. Kahrobaeian, and Y.A.-R. I. Mohamed, “Interactive Distributed Generation Interface for Flexible Micro-Grid Operation in Smart Distribution Systems,” IEEE Trans. on Sustainable Energy, vol. 3, no. 2, pp. 295-305, April, 2012.
[22] N. Eghtedarpour, and E. Farjah, “Distributed Charge/Discharge Control of Energy Storages in a Renewable-Energy-Based DC Micro-Grid,” IET Renewable Power Generation, vol. 8, no. 1, pp. 45-57, January, 2014.
[23] H. Qian, J. Zhang, J.-S. Lai, and W. Yu, “A High-Efficiency Grid-Tied Battery Energy Storage System,” IEEE Trans. on Power Electronics , vol. 26, no. 3, pp. 886-896, March, 2014.
[24] F. Ciancetta, A. Ometto, and N. Rotondale, “Analysis of PEM Fuel Cell-Supercapacitor-Battery Pack System during Standard Cycle,” Power Electronics Electrical Drives Automation and Motion (SPEEDAM), 2010 International Symposium on, vol., no., pp.1286-1290, June, 2010.
[25] M. Bertoluzzo and G. Buja, “Development of Electric Propulsion Systems for Light Electric Vehicles,” IEEE Trans. on Industrial Informatics, vol. 7, no. 3, pp. 428-435, August, 2011.
[26] A. C. C. Hua, and B. Z. W. Syue, “Charge and Discharge Characteristics of Lead-Acid Battery and LiFePO4 Battery,” in Prof. Power Electronics Conference (IPEC), 2010 International, vol., no., pp.1478-1483, June, 2010.
[27] W. Lee, B. M. Han, and H. Cha, "Battery Ripple Current Reduction in a Three-Phase Interleaved DC-DC Converter for 5kW Battery Charger," IEEE Energy Conversion Congress and Exposition, pp. 3535-3540, 2011.
[28] M. F. M. Elias, K. M. Nor, N. A. Rahim, and A. K. Arof, "Lithium-Ion Battery Charger for High Energy Application," in Prof. Power Engineering Conference, 2003. PECon 2003. Proceedings. National, vol., no., pp. 283-288, Decembr, 2003.
[29] R. M. Schupbach, and J. C. Balda, “Comparing DC-DC Converters for Power Management in Hybrid Electric Vehicles,” in Prof. Electric Machines and Drives Conference, 2003. IEMDC'03. IEEE International, no., vol. 3, pp. 1369-1374, June, 2003.
[30] H. Li, F. Z. Peng, and J. S. Lawler, "A Natural ZVS Medium-Power Bidirectional DC-DC Converter with Minimum Number of Devices," IEEE Trans. on Industrial Electronics, vol. 39, no. 2, pp. 525-535, April, 2003.
[31] C. E. Kim, S. K. Han, K. H. Yi, W. J. Lee and G. W. Moon, “A New High Efficiency ZVZCS Bidirectional DC/DC Converter for 42V Power System of HEVs,” in Prof. Power Electronics Specialists Conference, 2005. PESC '05. IEEE 36th, vol., no., pp. 792-797, June, 2005.
[32] F. A. Himmelstoss and M. E. Ecker, ”Analyses of a Bidirectional DC-DC Half-Bridge Converter with Zero Voltage Switching,” in Prof. Signals, Circuits and Systems, 2005. ISSCS 2005. International Symposium on, vol.2, no., pp. 449-452, July, 2005.
[33] L. Zhu, “A Novel Soft-Commutating Isolated Boost Full-Bridge ZVS-PWM DC-DC Converter for Bidirectional High Power Applications,” IEEE Trans. on Power Electronics, vol. 21, no. 2, pp. 422-429, March, 2006.
[34] J. Zhang, J. S. Lai, R. Y. Kim, and W. Yu, “High-Power Density Design of a Soft-Switching High-Power Bidirectional DC-DC Converter,” IEEE Trans. on Power Electronics, vol. 22, no. 4, pp. 1145-1153, July, 2007.
[35] L. Dong, X. Wang, Z. Liu, and X. Liao, “A New Soft Switching Bidirectional Buck or Boost DC-DC Converter,” in Prof. Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on, vol., no., pp.1163,1167, October, 2008.
[36] A. Khaligh, J. Cao, and Y. J. Lee, “A Multiple-Input DC-DC Converter Topology,” IEEE Trans. on Power Electronics, vol. 24, no. 2, pp. 862-868, March, 2009
[37] W. Li, H. Wu, H. Yu, and X. He, “Isolated Winding-Coupled Bidirectional ZVS Converter with PWM Plus Phase-Shift (PPS) Control Strategy,” IEEE Trans. on Power Electronics, vol. 26, no. 12, pp. 3560-3570, December, 2011.
[38] S. B. Monge, S. Alepuz, and J. Bordonau, “A Bidirectional Multilevel Boost-Buck DC-DC Converter,” IEEE Trans. on Power Electronics, vol. 26, no. 8, pp. 2172-2183, August, 2011.
[39] S. Park and Y. Song, "An Interleaved Half-bridge Bidirectional DC-DC Converter for Energy Storage System Applications," in Prof. Power Electronics and ECCE Asia (ICPE & ECCE), 2011 IEEE 8th International Conference on , vol., no., pp. 2029-2034, 2011.
[40] R. Y. Duan, and J. D. Lee, “High-Efficiency Bidirectional DC-DC Converter with Coupled Inductor,” IET Power Electronics, vol. 5, no. 1, pp. 115-123, January, 2012.
[41] R. T. Naayagi, A. J. Forsyth, and R. Shuttleworth, “High-Power Bidirectional DC-DC Converter for Aerospace Applications,” IEEE Trans. on Power Electronics, vol. 27, no. 11, pp. 4366-4379, November, 2012.
[42] M. Pahlevaninezhad, P. Das, J. Drobnik, P. K. Jain, and A. Bakhshai, “A Novel ZVZCS Full-Bridge DC/DC Converter Used for Electric Vehicles,” IEEE Trans. on Power Electronics , vol. 27, no. 6, pp. 2752-2769, June 2012
[43] N. Su, D. Xu, M. Chenand, and J. Tao, “Study of Bi-Directional Buck-Boost Converter with Different Control Methods,” in Prof. Vehicle Power and Propulsion Conference, 2008. VPPC '08. IEEE, vol., no., pp.1-5, September, 2008.
[44] S. Waffler, M. Preindl, and J.W. Kolar, “Multi-Objective Optimization and Comparative Evaluation of Si Soft-Switched and SiC Hard-Switched Automotive DC-DC Converters,” in Prof. Industrial Electronics, 2009. IECON '09. 35th Annual Conference of IEEE, vol., no., pp.3814-3821, November, 2009.
[45] H. Wu, J. Lu, W. Shi, and Y. Xing, “Nonisolated Bidirectional DC-DC Converters with Negative-Coupled Inductor,” IEEE Trans. on Power Electronics, vol. 27, no. 5, pp. 2231-2235, May, 2012.
[46] S. Waffler and J. W. Kolar, “A Novel Low-Loss Modulation Strategy for High-Power Bidirectional Buck + Boost Converters,” IEEE Trans. on Power Electronics, Power Electronics, vol. 24, no. 6,pp. 1589-1599, June, 2009.
[47] S. Waffler, and J.W. Kolar, “Efficiency Optimization of an Automotive Multi-Phase Bi-Directional DC-DC Converter,” in Prof. Power Electronics and Motion Control Conference, 2009. IPEMC '09. IEEE 6th International, vol., no., pp.566-572, May, 2009.
[48] S. Waffler, and J.W. Kolar, “Comparative Evaluation of Soft-Switching Concepts for Bi-Directional Buck + Boost DC-DC Converters,” in Prof. Power Electronics Conference (IPEC), 2010 International, vol., no., pp.1856-1865, June, 2010.
[49] S. Abedinpour, R. Liu, G. Fasullo, and K. Shenai, "Small-Signal Analysis of a New Asymmetrical Half-Bridge DC-DC Converter," in Prof. Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual, vol. 2, pp. 843-847, June, 2000.
[50] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Second-Edition, Kluwer Academic Publishers Group, Inc, 2001.
[51] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design. Third-Editions, John Wiley & Sons, Inc, 2002.
[52] H. Li, D. Liu, F. Z. Peng, and G. J. Su, “A Small Signal Analysis of a Dual Half Bridge Isolated ZVS Bi-directional DC-DC converter for Electrical Vehicle Applications," in Prof. Power Electronics Specialists Conference, 2005. PESC '05. IEEE 36th, vol., no., pp.2777-2782 June, 2005.
[53] A. I. Pressman, Switching Power Supply Design. Second-Edition, Mcgraw-Hill, Inc, 2009.
[54] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems. Fifth-Edition, Prentice Hall, Inc, 2005.
[55] D. Kwok, and P. Wang, “Optimal design of PID process controllers basded on genetic algorithms”, Control engineering practice, vol.2 no.4, pp. 193-197, 1994.
[56] H. D. Venable, “The K Factor: A New Mathematical Tool for Stability Analysis and Synthesis”, Venable Industries, Inc. http://www.venableind.com/.
[57] Y. C. Li, “Type III Compensator Design for Power Converters”, Ametek Programmable Power, Inc., http://powerelectronics.com/.
[58] Texas Instruments, “Designing a TMS320F280x Based Digitally Controlled DC-DC Switching Power Supply,” Data Sheet, July, 2005.
[59] Texas Instruments, “TMS320F28035 Piccolo Microcontrollers,” Data Sheet, 2012.

無法下載圖示 全文公開日期 2019/07/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE