簡易檢索 / 詳目顯示

研究生: 施又楨
Yu-Jen Shih
論文名稱: 可見光奈米光觸媒對室內環境改善之研究
Study of Visible-Light Photocatalyst on the Improvement of Indoor Environment
指導教授: 楊錦懷
Chin-Huai Young
口試委員: 黃兆龍
Chao-Lung Huang
賴宏仁
Hong-Ren
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 123
中文關鍵詞: 可見光光觸媒室內環境品質標準操作方法
外文關鍵詞: standard operating procedure, indoor environment quality, visible-light photocatalyst
相關次數: 點閱:325下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對當今用於改善室內環境品質眾多材料之一,奈米光觸媒,而為了去除民眾長時間所居留之室內環境有害物質,進而選取可見光奈米光觸媒。本研究乃藉由可見光光觸媒材料加以評估其除臭及抗菌效能,其中包括室內空氣中存在之氨氣、大腸桿菌與金黃色葡萄球菌,在氨氣部份分別對於光觸媒噴塗層數2層、3層、4層;光觸媒面積與室內總面積比例為1比6、1比4及1比3;照度以500 Lux與1000 Lux做分析比較;細菌部份針對4小時、8小時、16小時及24小時取樣,除此更對於材料成份、粉體粒徑及結晶相結構做分析並對塗層之耐久性能加以檢驗,提供國內爾後制定相關可見光奈米光觸媒標準操作方法之參考依據。
    在光觸媒性質分析結果顯示材料主要成份為二氧化鈦並以氧化矽作為膠結材、經由XRD分析得知晶型為銳鈦礦且粒徑分佈約在5~20 nm。耐久性方面以耐鹼性效果最佳,其次為耐鹽水性,耐酸性效果最差;氨氣部份其除臭效能與噴塗面積及照度為正相關,光觸媒噴塗層數以3層效果最佳;抗菌部份減菌率隨時間增長而增加,在24小時獲得最佳減菌效果。


    According to the recent reports, more and more kinds of pollution gas was detected inside the room which injured the human body, such as formaldehyde, ammonia, et al. The visible-light photocatalyst has been proved that it can decompose those pollution gas efficiently. The research here attempts to apply this new material on the reduction of ammonia and virus under the construction consideration. In addition, the standard methods to qualify the quality of photocatalyst on the reduction of air pollution and virus were also proposed in this research. Three parameters were used in this research to study the function of photocatalyst under various condition, which are spray layers of photocatalyst, power of visible-light and spray area ratios.
    According to the result of analysis, the main content of photocatalyst is TiO2, and the particle size is between 5 to 20 nm. The reduction of ammonia is strongly affected by the spray area ratio and power of visible-light. The larger spray area ratio induces better reduction effect. More power of visible-light can also reduce more concentration of ammonia. There layers of photocatalyst on the surface of base material can achieve the best efficiency of reduction. Therefore, three layers of coating is recommended in this study both for function and economic consideration. The more time duration on the illumination of visible-light induce much better reduction of virus on the surface of photocatalyst. The reduction ratio of staphylococcus and colon bacillus under 24 hours are 99.96% and 99.99% respectively.

    摘 要 I 英 摘 II 誌 謝 IV 目 錄 V 表目錄 VII 圖目錄 VIII 第一章 緒 論 1 1.1 研究動機 1 1.2 研究範圍 2 1.3 研究目的 3 1.4 研究方法與流程 4 第二章 空氣品質文獻回顧 6 2.1病態大樓症候群,SBS 6 2.2室內空氣污染物文獻回顧 7 2.3氨氣來源與化學物理性質介紹 11 第三章 奈米材料文獻回顧 18 3.1奈米材料之定義與特性 18 3.2奈米材料之製備方法 19 3.3光觸媒材料之介紹 20 3.4光觸媒之除臭、抗菌機制 21 3.5可見光催化型光觸媒 24 3.6自由基簡介 26 第四章 試驗計劃 32 4.1試驗流程 32 4.2試驗材料與設備 34 4.2.1 使用材料與藥劑類 34 4.2.2 試驗設備 34 4.3試驗變數及項目 38 4.3.1試驗項目 38 4.3.2試驗變數 39 4.4試驗方法 41 4.4.1 材料基本性質分析 41 4.4.2 耐久性試驗 42 4.4.3 氨氣衰退試驗 44 4.4.4 細菌減量試驗 48 第五章 研究結果與討論 62 5.1 材料基本性質分析 62 5.1.1光觸媒奈米材料成份分析 62 5.1.2光觸媒奈米粉體粒徑分析 64 5.1.3光觸媒材料結晶相X-ray分析 67 5.2 耐久性試驗 69 5.2.1 耐酸性試驗 69 5.2.2 耐鹼性試驗 72 5.2.3 耐鹽水性試驗 75 5.2.4 光觸媒塗層耐久性試驗綜合比較 78 5.3 氨氣衰退試驗 79 5.3.1 不銹鋼測試箱測漏與儀器校正 79 5.3.2 測試箱內部照度分佈量測 80 5.3.3 氣體穩定時數試驗 81 5.3.4 氨氣受光分解之影響 83 5.3.5 不同噴塗層數對氨氣衰退之影響 86 5.3.6 光觸媒噴塗面積比例差異對氨氣衰退之影響 94 5.3.7 可見光照射照度差異對氨氣衰退之影響 103 5.3.8 綜合比較 107 5.4 細菌減量試驗 109 5.5噴塗位置建議 116 第六章 結論與建議 117 6.1 結論 117 6.2建議 118 參考文獻 119

    [1] 行政院主計處中部辦公室,「台灣地區社會發展趨勢調查統計」,民國89年。
    [2] Jagjit Singh,” Impact of indoor air pollution on health, comfort and productivity of the occupants”, Aerobiologia, vol.12, Issue2, 1996, pp.121-127.
    [3] 陳東榮,住宅室內空氣品質(CO、CO2、PM10)現場測定與評估檢討,碩士論文,國立成功大學建築研究所,台南,1992。
    [4] 彭定吉,集合住宅室內空氣環境(CO、CO2、粉塵)現場量測方法之探討,碩士論文,國立成功大學建築研究所,台南,1991。
    [5] 謝梃蘊,考量健康風險評估之室內空氣品質指標之研擬,碩士論文,國立台北科技大學環境規劃與管理研究所,台北,2002。
    [6] Wei-Han, Su, “Indoor air pollution”, Resources, Conservation and Recycling, vol.16, Issue1-4, 1996, pp. 77-91.
    [7] A.P. Jones,” Indoor air quality and health”, Atmospheric Environment, vol.33, Issue28, 1999, pp. 4535-4564.
    [8] 呂宗昕,圖解奈米科技與光觸媒,台北:商周出版,2003,第129、178、179、187頁。
    [9] 馬振基,奈米材料科技原理與應用,台北:全華科技圖書股份有限公司,2003,第1-6、1-10、2-14、2-18到2-22、4-2、4-3、5-57頁。
    [10] 蘇慧貞教授,室內空氣品質與健康,成功大學環境醫學研究所。
    [11] 劉芸汶,一般辦公大樓空氣及灰塵中活性真菌濃度與病態大樓症候群之相關性探討,碩士論文,國立成功大學環境醫學研究所,台南,2002。
    [12] Brightman, H. S. and Moss, N. "Sick building syndrome studies and the complication of normative and comparative values." In: Spengler, J. D., Samet, J. M. and McCarthy, J. F. (eds) Indoor air quality handbook, McGraw-Hill., 2001, pp. 3.1-32.
    [13] 陳震宇,室內木質建材甲醛逸散之研究,碩士論文,國立臺灣大學環境工程學研究所,台北,2000。
    [14] 鄭懋雄,辦公空間通風效果與污染物濃度之研究-以台灣商業辦公大樓為例,碩士論文,國立成功大學建築研究所,台南,2000。
    [15] S.C. Lee, M. Chang “Indoor and Outdoor Air Quality Investigation at Schools
    in Hong Kong” Chemosphere, vol.41, 2000, pp. 109-113.
    [16] Shun-Cheng Lee. and Lo-Yin Chan, ”Indoor /Outdoor Air Quality Correlation
    and Questionnaire Surevey at Two Staff Quarters in Hong Kong”, Environment
    Interational, vol.24, No.7, 1998, pp 729-737.
    [17] 香港特別行政區政府室內空氣質素管理小組,辦公室及公眾場所室內空氣質素管理指引,2003。
    [18] 楊昇府,以Cu/Ce觸媒應用於氣相氨氧化及其反應動力之研究,碩士論文,國立中山大學環境工程研究所,高雄,2001。
    [19] M. Amblard, R. Burch and B.W.L. Southward, “A Study of The Mechanism of Selective Conversion of Ammonia to Nitrogen on Ni/γ-Al2O3 under Strongly Oxidising Conditions”, Catal. Today, vol.59, 2000, pp.365-371.
    [20] Keiji Hashimoto and Naoji Toukai, “Decomposition of Ammonia over a Catalyst Consisting of Ruthenium Metal and Cerium Oxides Supported on Y-Form Zeolite”, J. Mol. Catal. A Chem.138, 2000, pp.171-178.
    [21] Susan M. Clark, "Every Breath You take: Indoor Air Quality in the Library,"Can Libr J, 42, 1985, pp. 331.
    [22] 尹邦躍,奈米時代,台北,五南圖書出版股份有限公司,2002,第3、第64到65頁。
    [23] 張立德、牟季美,奈米材料和奈米結構,台中,滄海書局,2002,第94頁。

    [24] 陳琪婷,以二氧化錳催化降解水中氨氮之研究,碩士論文,國立中山大學海洋環境及工程學系研究所,高雄,2002。
    [25] A.Fujishima and K. Hashimoto, T. Watanabe, “TiO2 Photocatalysis Fundamentals and Application” BKC, 1999, pp. 125,128.
    [26] Amy L. Linsebigler, G. Lu, and John T. Yates,“Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results”, Chem. Rev. 95, 1995, 735.
    [27] Aarno, W., “Photocatalytic Properties of TiO2’’, Chemisty of Materials, vol.5, 1993, pp.280-283.
    [28] 陳俊翔,二氧化鈦觸媒製備對氣相苯及甲苯光催化分解之影響,碩士論文,國立台灣科技大學化學工程系,台北,1999。
    [29] Zepp, R. G., “Factors Affecting the Photochemical Treatment of Hazardous Waste”, Environ. Sci. & Technol., vol. 22, 1988, pp. 256.
    [30] Rominder, P. S., J. Lin, D. W. Hand, J. C. Crittenden, D. L. Perram, and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water”, Waer Environ. Res., vol.65, 1993, pp. 655.
    [31] Serpone N., Maruthamuthu P., Pichat P., Pelizzetti E., and Hidaka H. “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hold transfer between coupled semiconductors.”J. Photochem. Photobio. A:Chem.85, 1995 , pp 247-255.
    [32] Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi, and T. Akira, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bull. Chem. Soc., Jpn, vol. 58, 1985, pp. 2015-2022.
    [33] 王奕凱,呂春美,可見光激發型光觸媒簡介,環安簡訊電子報第四十三期,93。
    [34] Mitsunobu Iwasaki, Masayoshi Hara, Hiromi Kawada, Hiroaki Tada, Seishiro Ito, “Cobalt Ion-Doped TiO2 Photocatalyst Response to visible light”, Journal of Colloid and Interface Science, 224, 2000, pp. 202-204.
    [35] Hiromi Yamashita, Masaru Harada, Junko Misaka, Masato Takeuchi, Keita Ikeue, Maskazu Anpo, ”Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalyst”, Journal of Photobiology A: Chemical 148, 2002, pp.257-261.
    [36] Isao Nakamura, Nobuaki Negishi, Shuzo Kutsuna, Tatsuhiko Ihara, Shinichi Sugihara, Koji Takeuchi, ”Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst whit visible light activity for NO removal”, Journal of Molecular Catalysis A:Chemical 161, 2000, pp.205-212.
    [37] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga,”Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science, vol.293, 2001, pp.269-271.
    [38] H.Yamashita, H.Nishiguchi, N.Kamada, M.Anpo, “Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts”, Research on Chemical Intermediates, vol.20(8), 1994, pp.815-823.
    [39] 陳志賢,奈米可見光V/TiO2觸媒之合成與物性分析,碩士論文,國立台灣大學化學工程系,2002。
    [40] W.Choi, A.Termin and M.Hoffmann, “The role of metal ion dopants in quantum-size TiO2:correlation between photoactivity and charge carrier recombination dynamics”, Journal of Physical Chemistry, vol.98, 1994, pp.13669-13679.
    [41] G.Zhao, H.Kozuka, H.Lin and T.Yoko, “Sol-gel preparation of Tix-1VxO2 solid solution film electrodes with conspicuous photoresponse in the visible region”, Thin Solid Films, vol.339,1999, pp.123-128.
    [42] 張東憲,奈米光觸媒應用於玻璃表面之自淨功能研究,碩士論文,國立台灣科技大學營建工程系,2004。
    [43] Kentaro Teramura, Tsunehiro Tanaka, Seiji Yamazoe, Kyoko Arakaki, Takuzo Funabiki, “Kinetic study of photo-SCR with NH3 over TiO2 “, Applied Catalysis B: Environmental, vol.53, 2004, pp. 29-36.
    [44] Dean, J. A., ”Lange’s Handbook of Chemistry”, McGraw-Hill, 1973.
    [45] Linsebigler A. L., Lu G., Yates Jr. J. T. “Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results.”, Chem. Rev., 95, 1995, pp.735-758.
    [46] Dieckmann M. S. and Gray K. A.” A comparison of the degradation of
    4-Nitrophenol via direct and Sensitized Photocatalysis in TiO2 Slurries.”, Wat. Res.
    30(5), 1996, pp.1169-1183.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE