簡易檢索 / 詳目顯示

研究生: 張芸甄
Yun-Chen - Chang
論文名稱: 熔融沉積成型3D列印程序中氣態污染物排放之研究
Emission of Gas Pollutant in Fused Deposition Modeling 3D Printing Process
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 何郡軒
Jinn-Hsuan Ho
郭俞麟
Yu-Lin, Joseph, Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 3D列印積層製造揮發性有機化合物超微細粒子室內環境品質標準
外文關鍵詞: FDM 3D Printing, Volatile Organic Compounds/VOCs, Indoor Enviromental Quality, Standard
相關次數: 點閱:383下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熔融沉積成型3D列印因為其便利性和經濟性而廣泛應用在生產原型設備,然而大部分人卻未注意到列印時會釋放細懸浮微粒,微粒小於2.5 µm(PM2.5)時,會造成肺癌、心血管等身體上的危害,亦會伴隨著揮發性有機物質(VOCs)排放,對健康危害更加嚴重,目前對3D列印釋放污染物的研究尚不完善,且對3D 列印機之污染排放尚未有一致標準。
    本實驗研究目前最廣泛使用的熔融沉積成型3D列印技術,搭配常用的ABS和PLA線材進行研究,建立適合的分析方法,量測3D列印機在列印過程中所釋放的微粒與有機揮發性化合物,暸解汙染物來源,並針對列印噴頭溫度、列印尺寸、品牌、顏色和材料,研究各種不同參數對汙染物排放的影響,並進一步分析在列印過程中污染物的釋放行為,提出建議與改善的辦法。
      實驗結果發現,ABS線材所釋放的粒子遠大於PLA線材,並伴隨VOCs氣體的排放,主要釋放物為苯乙烯,此外微粒的釋放量會隨著提高噴頭溫度、實心列印步驟與樣品尺寸而增多。因此,使用三維列印機時,需保持空氣流通,及配備過濾系統以降低危害風險。


    Fused deposition modeling (FDM) three-dimensional (3D) printer is widely used in production prototypes because of its convenience and inexpensive price. However, most people are not aware of the ultrafine particle pulltants generated via 3D printing process. The lung cancer and cardiovascular disruptions will be induced by exposing to the ultrafine particles, which are smaller than 2.5 μm (PM2.5). One the other hand, volatile organic compounds (VOCs) are released during printing process as well, result in severe disease. The studies regarding the emission of pollutants from 3D printing process and related safety issue are not complete, moreover, the standard measurement of pollutants for 3D printer is not established.
    This research thus focused on the emission of particles and VOCs from two kinds of popular filaments, acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). The effects of different brands, filament color, nozzle temperature, and sample size on pollutant emission were investigated in detail to understand the release mechanism in the printing process and proposed an improved method and suggestions.
    The results showed that ABS filament exhibited much higher particle emission than PLA filament. The styrene is the major emission of VOCs. Furthermore, the particle emission is increases with the increase in nozzle temperature, pavement step, and sample size. As a result, the proper ventilation and filtration system should be equipped with FDM 3D printer for reducing the health risk.

    目錄 中文摘要 I 英文摘要 II 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1 空氣汙染對人體的危害 1 1-2 桌上型三維列印機 2 第二章 文獻回顧 5 2-1 空氣汙染 5 2-1-1 室內空氣品質 5 2-1-2 奈米技術和奈米粒子 9 2-2  3D列印程序 11 2-2-1 3D列印技術簡介 13 2-2-2 熔融沉積成型3D列印使用的材料 18 2-2-3 3D列印的排放微粒&VOCs之研究 19 2-3 3D列印排放物對健康的影響 21 第三章 實驗 23 3-1 實驗材料 23 3-2 實驗儀器與器材 26 3-3 實驗流程 29 3-4 實驗方法與步驟 31 3-4-1 實驗方法 31 3-4-2 實驗步驟 32 3-5 各項性質測定方法 33 3-5-1 線材熱穩定性 33 3-5-2 微粒釋放量 33 3-5-3 微粒定性 34 3-5-4 VOCs 釋放分析(I) 34 3-5-5 VOCs 釋放分析(II) 36 第四章 結果與討論 39 4-1 線材的熱裂解溫度分析 39 4-2 ABS線材品牌對細微粒子釋放的影響 42 4-3 ABS線材顏色對細微粒子釋放的影響 48 4-4 PLA線材品牌對細微粒子釋放的影響 53 4-5 列印噴頭溫度對細微粒子釋放的影響 55 4-6 列印樣品尺寸對細微粒子釋放的影響 57 4-7 列印機制對微粒釋放之影響 59 4-8 揮發性有機物質釋放分析 63 第五章 結論與未來展望 76 5-1 各種參數對粒子釋放影響 76 5-2 VOCS釋放影響 76 5-3 未來展望 78

    1. Organization, W.H. (2015) Global Health Observatory Data Repository. 2015.
    2. Patel, P.S. (2016) Characterization of nanoparticle emissions from 3D printers in different environments, SAN DIEGO STATE UNIVERSITY.
    3. Gross, B.C., Erkal, J.L., Lockwood, S.Y., Chen, C. and Spence, D.M. (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7), 3240-3253.
    4. Frauenfelder, M. (2013) Make: Ultimate guide to 3D printing 2014, Maker Media, Inc.
    5. Stephens, B., Azimi, P., El Orch, Z. and Ramos, T. (2013) Ultrafine particle emissions from desktop 3D printers. Atmospheric Environment 79, 334-339.
    6. Zitting, A. and Savolainen, H. (1980) Effects of single and repeated exposures to thermo-oxidative degradation products of poly (acrylonitrile-butadiene-styrene)(ABS) on rat lung, liver, kidney, and brain. Archives of toxicology 46(3-4), 295-304.
    7. Schaper, M.M., Thompson, R.D. and Detwiler-Okabayashi, K.A. (1994) Respiratory responses of mice exposed to thermal decomposition products from polymers heated at and above workplace processing temperatures. American Industrial Hygiene Association 55(10), 924-934.
    8. Oberdörster, G., Oberdörster, E. and Oberdörster, J. (2005) Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives 113(7), 823-839.
    9. Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. and Cox, C. (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16(6-7), 437-445.
    10. Kim, Y., Yoon, C., Ham, S., Park, J., Kim, S., Kwon, O. and Tsai, P.-J. (2015) Emissions of nanoparticles and gaseous material from 3D printer operation. Environmental science & technology 49(20), 12044-12053.
    11. Sundell, J. (1999) Education and Training in Indoor Air Sciences, pp. 9-18, Springer.
    12. Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Hern, S.C. and Engelmann, W.H. (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of exposure analysis and environmental epidemiology 11(3), 231-252.
    13. Chen, C. and Zhao, B. (2011) Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment 45(2), 275-288.
    14. Srivastava, P., Pandit, G., Sharma, S. and Rao, A.M. (2000) Volatile organic compounds in indoor environments in Mumbai, India. Science of the Total Environment 255(1), 161-168.
    15. Sterling, D.A. (1985) Volatile organic compounds in indoor air: an overview of sources, concentrations, and health effects. Indoor air and human health 387.
    16. Bernstein, J.A., Alexis, N., Bacchus, H., Bernstein, I.L., Fritz, P., Horner, E., Li, N., Mason, S., Nel, A., Oullette, J., Reijula, K., Reponen, T., Seltzer, J., Smith, A. and Tarlo, S.M. (2008) The health effects of non-industrial indoor air pollution. J Allergy Clin Immunol 121(3), 585-591.
    17. Perry, R. and Gee, I. (1994) Vehicle emissions and effects on air quality: indoors and outdoors. Indoor and Built Environment 3(4), 224-236.
    18. Yocom, J.E. (1982) A critical review. Journal of the Air Pollution Control Association 32(5), 500-520.
    19. Mlhave, L., Clausen, G., Berglund, B., Ceaurriz, J.D., Kettrup, A., Lindvall, T., Maroni, M., Pickering, A., Risse, U. and Rothweiler, H. (1997) Total volatile organic compounds (TVOC) in indoor air quality investigations. Indoor air 7(4), 225-240.
    20. Zhang, J. (2003) Indoor air pollution: a global health concern. British Medical Bulletin 68(1), 209-225.
    21. Berglund, B., Brunekreef, B., Knöppe, H., Lindvall, T., Maroni, M., Mlhave, L. and Skov, P. (1992) Effects of indoor air pollution on human health. Indoor air 2(1), 2-25.
    22. Bruce, N., Perez-Padilla, R. and Albalak, R. (2000) Indoor air pollution in developing countries: a major environmental and public health challenge. Bulletin of the World Health Organization 78(9), 1078-1092.
    23. Chen, B., Hong, C., Pandey, M.R. and Smith, K.R. (1989) Indoor air pollution in developing countries. World health statistics quarterly. Rapport trimestriel de statistiques sanitaires mondiales 43(3), 127-138.
    24. Collings, D., Sithole, S. and Martin, K. (1990) Indoor woodsmoke pollution causing lower respiratory disease in children. Tropical Doctor 20(4), 151-155.
    25. Smith, K.R., Mehta, S. and Maeusezahl-Feuz, M. (2004) Indoor air pollution from household use of solid fuels. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors 2, 1435-1493.
    26. Chriqui, J.F., Frosh, M., Brownson, R., Shelton, D., Sciandra, R., Hobart, R., Fisher, P., El Arculli, R. and Alciati, M. (2002) Application of a rating system to state clean indoor air laws (USA). Tobacco Control 11(1), 26-34.
    27. Moglia, D., Smith, A., MacIntosh, D.L. and Somers, J.L. (2006) Prevalence and implementation of IAQ programs in US schools. Environmental Health Perspectives, 141-146.
    28. Takeda, K., Suzuki, K.-i., Ishihara, A., Kubo-Irie, M., Fujimoto, R., Tabata, M., Oshio, S., Nihei, Y., Ihara, T. and Sugamata, M. (2009) Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. Journal of Health Science 55(1), 95-102.
    29. Morawska, L., Ristovski, Z., Jayaratne, E., Keogh, D.U. and Ling, X. (2008) Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmospheric Environment 42(35), 8113-8138.
    30. Brouwer, D. (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269(2-3), 120-127.
    31. Tsuda, H., Xu, J., Sakai, Y., Futakuchi, M. and Fukamachi, K. (2009) Toxicology of engineered nanomaterials-a review of carcinogenic potential. Asian Pac J Cancer Prev 10(6), 975-980.
    32. Seaton, A., Tran, L., Aitken, R. and Donaldson, K. (2010) Nanoparticles, human health hazard and regulation. J R Soc Interface 7 Suppl 1, S119-129.
    33. Simkó, M. and Mattsson, M.-O. (2010) Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Particle and Fibre Toxicology 7(1), 1.
    34. Berman, B. (2012) 3-D printing: The new industrial revolution. Business Horizons 55(2), 155-162.
    35. Fonda, C. (2013) A practical guide to your first 3D print. Low-cost 3D printing for science, education and sustainable development, 1st edn. ICTP—The Abdus Salam International Centre for Theoretical Physica, 25-60.
    36. Campbell, T., Williams, C., IVANOVA, O. and Garrett, B. (2011a) Could 3D Printing Change the World? Technologies, Potential and Implications of Additive Manufacturing, Strategic Foresight. Atlantic Council (www. acus. org).
    37. Karunakaran, K.P., Suryakumar, S., Pushpa, V. and Akula, S. (2010) Low cost integration of additive and subtractive processes for hybrid layered manufacturing. Robotics and Computer-Integrated Manufacturing 26(5), 490-499.
    38. Malone, E. and Lipson, H. (2008) Multi-material freeform fabrication of active systems, pp. 345-353, American Society of Mechanical Engineers.
    39. Campbell, R., De Beer, D. and Pei, E. (2011b) Additive manufacturing in South Africa: building on the foundations. Rapid Prototyping Journal 17(2), 156-162.
    40. Wong, J.Y. and Pfahnl, A.C. (2014) 3D Printing of Surgical Instruments for Long-Duration Space Missions. Aviation, Space, and Environmental Medicine 85(7), 758-763.
    41. Cooke, M.N., Fisher, J.P., Dean, D., Rimnac, C. and Mikos, A.G. (2003) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater 64(2), 65-69.
    42. Zein, I., Hutmacher, D.W., Tan, K.C. and Teoh, S.H. (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4), 1169-1185.
    43. Ford, S.L. (2014) Additive manufacturing technology: Potential implications for US manufacturing competitiveness. Journal of International Commerce and Economics.
    44. Zhang, K., Liu, W. and Shang, X. (2007) Research on the processing experiments of laser metal deposition shaping. Optics & Laser Technology 39(3), 549-557.
    45. Ahn, D., Kweon, J.-H., Choi, J. and Lee, S. (2012) Quantification of surface roughness of parts processed by laminated object manufacturing. Journal of Materials Processing Technology 212(2), 339-346.
    46. Capel, A.J., Edmondson, S., Christie, S.D., Goodridge, R.D., Bibb, R.J. and Thurstans, M. (2013) Design and additive manufacture for flow chemistry. Lab Chip 13(23), 4583-4590.
    47. Afshar-Mohajer, N., Wu, C.-Y., Ladun, T., Rajon, D.A. and Huang, Y. (2015) Characterization of particulate matters and total VOC emissions from a binder jetting 3D printer. Building and Environment 93, 293-301.
    48. Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., Chen, K., Pinschmidt, R., Rolland, J.P. and Ermoshkin, A. (2015) Continuous liquid interface production of 3D objects. Science 347(6228), 1349-1352.
    49. Espalin, D., Muse, D.W., MacDonald, E. and Wicker, R.B. (2014) 3D Printing multifunctionality: structures with electronics. The International Journal of Advanced Manufacturing Technology 72(5-8), 963-978.
    50. Rutkowski, J.V. and Levin, B.C. (1986) Acrylonitrile–butadiene–styrene copolymers (ABS): Pyrolysis and combustion products and their toxicity—a review of the literature. Fire and materials 10(3‐4), 93-105.
    51. Rodríguez, J.F., Thomas, J.P. and Renaud, J.E. (2001) Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation. Rapid Prototyping Journal 7(3), 148-158.
    52. Drumright, R.E., Gruber, P.R. and Henton, D.E. (2000) Polylactic acid technology. Advanced materials 12(23), 1841-1846.
    53. Chien, Y.-C., Liang, C. and Yang, S.-h. (2011) Exploratory study on the pyrolysis and PAH emissions of polylactic acid. Atmospheric Environment 45(1), 123-127.
    54. Herrera, M., Matuschek, G. and Kettrup, A. (2001) Main products and kinetics of the thermal degradation of polyamides. Chemosphere 42(5), 601-607.
    55. Morgan, R.J. and O'Neal, J.E. (1976) The relationship between the physical structure and the mechanical properties of polycarbonate. Journal of Polymer Science: Polymer Physics Edition 14(6), 1053-1076.
    56. Tymrak, B.M., Kreiger, M. and Pearce, J.M. (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design 58, 242-246.
    57. Azimi, P., Zhao, D., Pouzet, C., Crain, N.E. and Stephens, B. (2016) Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environmental science & technology 50(3), 1260-1268.
    58. Steinle, P. (2016) Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. Journal of occupational and environmental hygiene 13(2), 121-132.
    59. Unwin, J., Coldwell, M.R., Keen, C. and McAlinden, J.J. (2013) Airborne emissions of carcinogens and respiratory sensitizers during thermal processing of plastics. Ann Occup Hyg 57(3), 399-406.
    60. Hinds, W.C. (2012) Aerosol technology: properties, behavior, and measurement of airborne particles, John Wiley & Sons.
    61. Chalupa, D.C., Morrow, P.E., Oberdörster, G., Utell, M.J. and Frampton, M.W. (2004) Ultrafine Particle Deposition in Subjects with Asthma. Environmental Health Perspectives 112(8), 879-882.
    62. Delfino, R.J., Sioutas, C. and Malik, S. (2005) Potential Role of Ultrafine Particles in Associations between Airborne Particle Mass and Cardiovascular Health. Environmental Health Perspectives 113(8), 934-946.
    63. Peters, A., Wichmann, H.E., Tuch, T., Heinrich, J. and Heyder, J. (1997) Respiratory effects are associated with the number of ultrafine particles. American journal of respiratory and critical care medicine 155(4), 1376-1383.
    64. Penttinen, P., Timonen, K., Tiittanen, P., Mirme, A., Ruuskanen, J. and Pekkanen, J. (2001) Ultrafine particles in urban air and respiratory health among adult asthmatics. European Respiratory Journal 17(3), 428-435.
    65. Klot, S.v., Wolke, G., Tuch, T., Heinrich, J., Dockery, D.W., Schwartz, J., Kreyling, W.G., Wichmann, H.E. and Peters, A. (2002) Increased asthma medication use in association with ambient fine and ultrafine particles. European Respiratory Journal 20(3), 691-702.
    66. Lithner, D., Larsson, A. and Dave, G. (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409(18), 3309-3324.
    67. Wei, X., Li, D., Jiang, W., Gu, Z., Wang, X., Zhang, Z. and Sun, Z. (2015) 3D printable graphene composite. Scientific reports 5.

    無法下載圖示 全文公開日期 2022/02/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE