簡易檢索 / 詳目顯示

研究生: 鄭魁丰
Kuei-Feng Cheng
論文名稱: 高靈敏度PtTFPP/Carbon Black/Polystyrene 氧敏感複合薄膜之光學溶氧感測器應用
Application of High Sensitivity PtTFPP/Carbon Black/Polystyrene Oxygen Sensitive Composite Film to Optical Dissolved Oxygen Sensor
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 游進陽
Chin-Yang Yu
邱顯堂
Hsien-Tang Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 87
中文關鍵詞: 溶氧感測器螢光猝滅氟苯基鉑卟啉碳黑聚苯乙烯
外文關鍵詞: Dissolved Oxygen Sensor, Fluorescence Quenching, Platinum Tetrakis Pentrafluoropheny Porphine, Carbon Black, Polystyrene
相關次數: 點閱:266下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

螢光猝滅(Fluorescence Quenching)是指當螢光染料吸收特定波長的光源時,會從原本穩定的基態,提升至不穩定的激發態,在激發態的情況下,藉由產生螢光的方式來釋放能量,回到穩定的基態,釋放能量的過程與猝滅劑(Quencher)接觸時,會使能量傳遞給猝滅劑,造成螢光強度的減低。
本研究是利用螢光猝滅的原理製作出氧敏感薄膜並將其應用到光學溶氧感測器上。首先將聚苯乙烯(Polystyrene, PS)與氟苯基鉑卟啉(Platinum Tetrakis Pentrafluoropheny Porphine, PtTFPP)摻合,並進一步使用磷酸三丁酯(Tributyl Phosphate, TBP)與碳黑(Carbon Black, CB)改善透氧率與比表面積,藉此提升靈敏度。奈米碳材分散的製程中,CB是使用非離子型界面活性劑Triton-X-100使其均勻分散在其中,最終可以製作出高靈敏度氧敏感薄膜。
研究結果顯示PS與PtTFPP的重量比在150/1時有最高靈敏度(I0/I100)為11.73,Sterm-Volmer曲線的線性率(R2)為0.9955,當添加TBP為PS的3wt%後靈敏度提升到16.51、R2為0.99339,進一步摻合碳黑靈敏度更是到達19.12、R2為0.9916,證實了添加TBP和CB能有效改善薄膜靈敏度。最後我們成功使用簡單且低成本的方式製作出高靈敏度且準確的氧敏感薄膜,在未來可利用此方法發展出各種高靈敏度感測器,並應用於水質檢測的領域上。


Fluorescence quenching means fluorescent dye absorbs a light source of a specific wavelength, it will rise from an originally stable ground state to an unstable excited state, and in the case of an excited state, emit energy by generating fluorescence, and Returning to stable ground state, the process of releasing energy contacts the quencher, and transfers energy to the quencher, resulting in a decrease in fluorescence intensity.
In this study uses the principle of fluorescence quenching to make oxygen sensitive film and apply it to an optical dissolved oxygen sensor. First, polystyrene (polystyrene, PS) is blended with Platinum Tetrakis Pentrafluoropheny Porphine (Platinum Tetrakis Pentrafluoropheny Porphine, PtTFPP), and further used Tributyl Phosphate (Tributyl Phosphate, TBP) and Carbon Black (Carbon Black, CB) improve oxygen permeability and surface area, thereby increasing the sensitivity of fluorescence. In the process of dispersing nano carbon materials, CB is evenly dispersed by using non-ionic surfactant (Triton-X-100). Finally, a highly sensitive oxygen sensitive film can be produced.
The results show that the weight ratio of PS/PtTFPP has the highest sensitivity (I0/I100) of 11.73 at 150/1, the linearity (R2) at Sterm-Volmer curve is 0.9955, and the sensitivity increased to 16.51 after adding TBP to 3 wt%, and R2 is 0.99339. The sensitivity of further blending CB is 19.12 and R2 is 0.9916. It is confirmed that the addition of TBP and CB can effectively improve the sensitivity of the film and have a good linear relationship. Finally, we succeeded in producing high-sensitivity and accurate fluorescent films using a simple and low-cost method. In the future, we can develop various high-sensitivity sensors and apply them to the field of water quality testing.

誌謝 I 摘要 II Abstract IV 第一章 緒論 1 1.1前言 1 1.2研究目的 2 第二章 文獻回顧 3 2.1溶解氧測定方法 3 2.1.1碘量滴定法 3 2.1.2電化學法 4 2.1.3分光光度法 5 2.1.4原子吸收法 6 2.1.5螢光分析法 7 2.2螢光材料 9 2.2.1螢光材料介紹 9 2.2.2螢光材料分類 10 2.2.3分子結構對螢光材料的影響 11 2.3氧敏感指示劑 12 2.3.1氧敏感指示劑介紹 12 2.3.2多環芳烴類 13 2.3.3雜環化合物 14 2.3.4過渡金屬錯合物 15 2.4氧敏感薄膜 18 2.4.1氧敏感薄膜介紹 18 2.4.2膜基體介紹 18 2.5提升氧敏感膜性能方法 20 2.5.1改變薄膜型態 20 2.5.2添加奈米粒子 21 2.6增塑劑 22 2.6.1增塑劑介紹 22 2.6.2增塑劑種類 23 2.6.3增塑劑作用原理與機制 23 2.7碳材料介紹 25 2.7.1碳黑介紹 25 2.7.2碳黑的結構及特性 25 2.7.3碳黑的製造方法 28 2.8奈米粒子之分散及穩定機制 28 2.8.1分散及穩定之種類 28 2.8.2界面活性劑介紹 29 第三章 實驗方法 31 3.1實驗藥品與設備儀器 31 3.1.1藥品與耗材 31 3.1.2實驗設備 33 3.1.3分析儀器 34 3.2實驗流程圖 39 3.3實驗步驟 40 3.3.1聚苯乙烯溶液製備 40 3.3.2螢光溶液製備 40 3.3.3碳黑分散溶液製備 41 3.3.4氧敏感薄膜溶液製備 41 3.3.5氧敏感薄膜塗佈 42 第四章 結果與討論 43 4.1聚苯乙烯/螢光染料PtTFPP製備氧敏感薄膜 43 4.1.1以UV-Vis分析PtTFPP的吸收光譜 43 4.1.2不同PtTFPP添加量對靈敏度的影響 44 4.1.3不同厚度對靈敏度的影響 45 4.1.4氧敏感薄膜在不同氧氣濃度下的螢光強度和Sterm-Volmer曲線 47 4.1.5分析氧敏感膜的響應時間和穩定性 49 4.2增塑劑TBP對氧敏感薄膜的影響 51 4.2.1不同TBP添加量對靈敏度的影響 52 4.2.2添加TBP對結晶性的影響 54 4.2.3氧敏感膜薄膜添加TBP後在不同氧氣濃度下的螢光強度和Sterm-Volmer曲線 56 4.2.4氧敏感薄膜添加TBP後的響應時間和穩定性 58 4.2.5以AFM來分析氧敏感薄膜添加TBP後的表面結構 60 4.3 Triton-X-100對於碳黑的分散性質 62 4.3.1以DLS分析碳黑的分散性質 63 4.3.2以TEM分析碳黑的分散性質 64 4.3.3以TEM分析不同比表面積碳黑的分散性質 65 4.4碳黑對氧敏感薄膜的影響 67 4.4.1不同碳黑添加量對靈敏度的影響 67 4.4.2不同碳黑添加量對抗外界干擾的影響 69 4.4.3氧敏感薄膜添加碳黑後在不同氧氣濃度下的螢光強度和Sterm-Volmer曲線 70 4.4.4氧敏感薄膜添加碳黑後的響應時間和穩定性 72 4.4.5以AFM分析氧敏感薄膜添加碳黑後的表面結構 75 4.5比較氧敏感膜添加不同比表面積碳黑的差異 76 4.5.1比較氧敏感薄膜添加不同比表面積碳黑的螢光性能 76 4.5.2以AFM分析氧敏感薄膜添加不同比表面積碳黑後的表面結構 78 4.6光學溶氧感測器之應用 79 4.6.1氧敏感薄膜於水中的穩定性 79 4.6.2氧敏感薄膜應用於光學溶氧感測器 81 第五章 結論 84 第六章 參考文獻 85

[1] P. Majumdar, R. Nomula, and J. Zhao, Activatable triplet photosensitizers: magic bullets for targeted photodynamic therapy, J. Mater. Chem. C 2014, 2, 5982-5997.
[2] X. D. Wang, and O. S. Wolfbeis, Optical methods for sensing and imaging oxygen: materials, Spectroscopies and Applications, Chemical Society Reviews 2014, 43, 3666-3761.
[3] 陳偉榮,溶氧監測探頭核心技術取得大突破280億大市場即將爆發,中國水產養殖年刊,2017。
[4] R. Steiner, Why do veins appear blue? A new look at an old question, Applied Optics 1996, 35, 1151-1160.
[5] J. K. Fredrickson, J. M. Zachara, D. L. Balkwill, D. Kennedy, S. W. Li, H. M. Kostandarithes, M. J. Daly, M. F. Romine, and F. J. Brockman, Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the hanford site, washington state, Appl. Environ. Microbiol 2004, 70, 4230-4241.
[6] H. Zhu, Y. Tian, S. Bhushan, F. Su, and D. R. Meldrum, High Throughput Micropatterning of Optical Oxygen Sensor for Single Cell Analysis, IEEE Sens J 2012, 12, 1668-1672.
[7] S. M. Grist, L. Chrostowski, and K. C. Cheung, Optical oxygen sensors for applications in microfluidic cell culture, Sensors (Basel) 2010, 10, 9286-9316.
[8] D. R. Lide, CRC Handbook of Chemistry and Physics, 2008, 87.
[9] W. S. Hou, Y. Y. Cheng, and I. Z. Cheng, Research of Self-operated Low-cost Dissolved Oxygen Sensor (II), Journal of Taiwan Agricultural Engineering 2008, 54, 14-26.
[10] K. Koren, K. E. Brodersen, S. L. Jakobsen, and M. Kuhl, Optical sensor nanoparticles in artificial sediments-A new tool to visualize O2 dynamics around the rhizome and roots of seagrasses, Environ. Sci. Technol. 2015, 49 2286-2292.
[11] H. Tschiersch, G. Liebsch, and L. Borisjuk, A. Stangelmayer, H. Rolletschek, An imaging method for oxygen distribution, respiration and photosynthesis at a microscopic level of resolution, New Phytol 2012, 196, 926-936.
[12] 劉橋陽,分光光度法測定水中溶解氧,環境工程,2008,26,92-94.
[13] 華中師範大學,分析化學,高等教育出版社,2001.
[14] 朱承軒,溶膠-凝膠基體參雜奈米粒子在高靈敏度光纖氧氣與二氧化碳感測器之研究,國立成功大學博士論文,機械工程研究所,2009.
[15] 葉耀宗;黃建豪;張學明,螢光材料之發展現況及展望,工業材料雜誌,2016,352.
[16] 陳暘,以八乙基铂卟啉为氧敏剂的溶解氧敏感膜研究,江南大學碩士論文,2015.
[17] W. Xu, R. Schmidt, M. Whaley, J. N. Demas, B. A. Degaff, E. K. Karikari, and B. L. Farmer, Oxygen Sensors Based on Luminescence Quenching: Interactions of Pyrene with the Polymer Supports, Anal. Chem 1995, 67, 3172-3180.
[18] R. J. Trebra, and T. H. Koch, Photochemistry of Coumarin Laser Dyes: The role of singlet oxygen in the Photo-Oxidation of Coumarin 311, J. Photochem 1986, 35, 33-46.
[19] P. Kiernan, C. Mcdonagh, B. D. Maccraith, and K. Mongey, Ruthenium-doped sol-gel derived silica films: Oxygen Sensitivity of optical decay times, Journal of Sol-Gel Science and Technology 1994, 2, 513-517.
[20] C. S. Chu, T. S. Yeh, and Y. L. Lo, Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol–gel matrices, Sens. Actuators B Chem. 2006, 119, 701-707.
[21] 邱微微,基於螢光猝滅原理的溶解氧敏感膜的研究,江南大學碩士論文,2013.
[22] C. S. Chu, Optical fiber oxygen sensor based on Pd(II) complex embedded in sol–gel matrix, J. Lumin. 2013, 135, 5-9.
[23] C. S. Chu, and C. Y. Chuang, Ratiometric optical fiber dissolved oxygen sensor based on metalloporphyrin and CdSe quantum dots embedded in sol–gel matrix, J. Lumin. 2015, 167, 114-119.
[24] I. Okura, Photostable Optical Oxygen Sensing Material: Platinum Tetrakis(pentafluorophenyl)porphyrin Immobilized in Polystyrene, Anal. Commun. 1997, 34, 185-188.
[25] L. Liang, G. Li, Z. Mei, J. Shi, Y. Mao, T. Pan, C. Liao, J. Zhang, and Y. Tian, Preparation and application of ratiometric polystyrene-based microspheres as oxygen sensors, Anal Chim Acta 2018, 1030, 194-201.
[26] K. Zhang, H. Zhang, W. Li, Y. Tian, S. Li, J. Zhao, and Y. Li, PtOEP/PS composite particles based on fluorescent sensor for dissolved oxygen detection, Materials Letters 2016, 172, 112-115.
[27] S. Lee, and J. W. Park, Luminescent oxygen sensors with highly improved sensitivity based on a porous sensing film with increased oxygen accessibility and photoluminescence, Sens. Actuators B Chem. 2017, 249, 364-377.
[28] Y. Mao, Z. Mei, J. Wen, G. Li, Y. Tian, B. Zhou, and Y. Tian, Honeycomb structured porous films from a platinum porphyrin-grafted poly(styrene-co-4-vinylpyridine) copolymer as an optical oxygen sensor, Sens. Actuators B Chem 2018, 257, 944-953.
[29] C. A. Kelly, C. Toncelli, J. P. Kerry, and D. B. Papkovsky, Discrete O2 sensors produced by a spotting method on polyolefin fabric substrates, Sens. Actuators B Chem 2014, 203, 935-940.
[30] Y. Mao, Y. Gao, S. Wu, S. Wu, J. Shi, B. Zhou, and Y. Tian, Highly enhanced sensitivity of optical oxygen sensors using microstructured PtTFPP/PDMS-pillar arrays sensing layer, Sensors and Actuators B: Chemical 2017, 251, 495-502.
[31] S. A. U. Hasan, Y. Jung, S. Kim, C. L. Jung, S. Oh, J. Kim, and H. Lim, A Sensitivity Enhanced MWCNT/PDMS Tactile Sensor Using Micropillars and Low Energy Ar(+) Ion Beam Treatment, Sensors (Basel) 2016, 16.
[32] C. S. Chu, Y. L. Lo, and T. W. Sung, Enhanced oxygen sensing properties of Pt(II) complex and dye entrapped core-shell silica nanoparticles embedded in sol-gel matrix, Talanta 2010, 82, 1044-51.
[33] C. S. Chu, and Y. L. Lo, Optical fiber dissolved oxygen sensor based on Pt(II) complex and core-shell silica nanoparticles incorporated with sol–gel matrix, Sens. Actuators B Chem. 2010, 151, 83-89.
[34] C. S. Chu, T. W. Sung, and Y. L. Lo, Enhanced optical oxygen sensing property based on Pt(II) complex and metal-coated silica nanoparticles embedded in sol–gel matrix, Sens. Actuators B Chem. 2013, 185, 287-292.
[35] 黃海松,塑化劑,工業技術研究院,1981.
[36] A. Mills, Controlling the sensitivity of optical oxygen sensors, Sens. Actuators B Chem. 1998, 15, 60-68.
[37] 謝立生,碳黑物性與應用入門,高分子期刊,1998,51-58.
[38] 陳俊勳,生物可分解高分子正溫度係數效應之研究,國立臺北科技大學碩士論文,有機高分子研究所,2006.
[39] 謝立生,高分子工業,1998,77期,51-56.
[40] 陳佳莉,全球碳黑產業現況,台灣工業銀行,2007.
[41] A. I. Medlia, and F. A. Heckman, Morphology of aggregates—II. Size and shape factors of carbon black aggregates from electron microscopy, Carbon 1969, 7, 577-582.
[42] J. B. Donnet, Fifty years of research and progress on carbon black, Carbon 1994, 32, 1305-1310.
[43] J. A. A. E. Romero, Additives: special carbon blacks for plastics, Plastics engineering 1995, 5, 153-161.
[44] J. B. Donnet, Carbon black: science and technology, CRC Press, 1993.
[45] Derjaguin, Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes, Acta Physicochim 1941, 14, 633-662.
[46] E. J. W. Verwey, Theory of the stability of lyophobic colloids, J. Phys. Chem 1947, 51, 631-636.
[47] 趙承琛,界面科學基礎,復文書局,2007.
[48] J. Lehmann, The observation of the crystallization of high polymer substances from the solution by nuclear magnetic resonance, Colloid & Polymer Science 1966, 212, 167-168.

無法下載圖示 全文公開日期 2024/07/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE